Page 119 - 《摩擦学学报》2021年第5期
P. 119
708 摩 擦 学 学 报 第 41 卷
区域变化不明显. 然而,由于多层石墨烯的边界效应 [10] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic
不显著,因此导致了石墨烯不同区域的平均摩擦力差 properties and intrinsic strength of monolayer graphene[J]. Science,
2008, 321(5887): 385–388. doi: 10.1126/science.1157996.
别不明显.
[11] Lee C, Wei Xiaoding, Li Qunyang, et al. Elastic and frictional
3 结论 properties of graphene[J]. Physica Status Solidi (b), 2009, 246(11-
12): 2562–2567. doi: 10.1002/pssb.200982329.
a . 在锥形探针的作用下,单层石墨烯中心区域的 [12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2
平均摩擦力明显大于其边界位置处的平均摩擦力;而 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147–150. doi:
在球形探针的作用下,单层石墨烯的平均摩擦力随作 10.1038/nnano.2010.279.
用区域的变化不明显. [13] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010,
b. 对于多层石墨烯,无论是在锥形探针还是球形 5(7): 487–496. doi: 10.1038/nnano.2010.89.
[14] Wang Zhuo, Dong Zhaogang, Gu Yinghong, et al. Giant
探针的作用下,其平均摩擦力随作用区域的变化均不
photoluminescence enhancement in tungsten-diselenide-gold
明显.
plasmonic hybrid structures[J]. Nature Communications, 2016, 7(1):
c. 石墨烯的摩擦力随其厚度的增加而减小,而粘 1–8. doi: 10.1038/ncomms11283.
附力随其厚度的变化不明显. [15] Li Qunyang, Lee C, Carpick R W, et al. Substrate effect on
d. 石墨烯在球形探针作用下的摩擦强化效应强 thickness-dependent friction on graphene[J]. Physica Status Solidi
于锥形探针作用下的摩擦强化程度,石墨烯的摩擦强 (b), 2010, 247(11-12): 2909–2914. doi: 10.1002/pssb.201000555.
[16] Zeng Xingzhong, Peng Yitian, Lang Haojie. A novel approach to
化效应随其厚度的增加而减弱.
decrease friction of graphene[J]. Carbon, 2017, 118: 233–240. doi:
参 考 文 献
10.1016/j.carbon.2017.03.042.
[ 1 ] Hornbeck L J. The DMD^TM projection display chip: a MEMS- [17] Sasaki N, Kobayashi K, Tsukada M. Atomic-scale friction image of
based technology[J]. MRS Bulletin, 2001, 26(4): 325–327. doi: 10. graphite in atomic-force microscopy[J]. Physical Review B,
1557/mrs2001.72. Condensed Matter, 1996, 54(3): 2138–2149. doi:
[ 2 ] Yuan Songmei, Zhou Zhaoying, Wang Guohui, et al. MEMS-based 10.1103/physrevb.54.2138.
piezoelectric array microjet[J]. Microelectronic Engineering, 2003, [18] Leenaerts O, Partoens B, Peeters F M. Adsorption ofH2O, NH3, CO,
66(1-4): 767–772. doi: 10.1016/S0167-9317(02)00997-8. NO2, and NO on graphene: a first-principles study[J]. Physical
[ 3 ] Ernst H, Jachimowicz A, Urban G A. High resolution flow Review B, 2008, 77(12): 125416. doi: 10.1103/physrevb.77.125416.
characterization in Bio-MEMS[J]. Sensors and Actuators [19] Park C, Anderson P E, Chambers A, et al. Further studies of the
A:Physical, 2002, 100(1): 54–62. doi: 10.1016/S0924-4247(02) interaction of hydrogen with graphite nanofibers[J]. The Journal of
00187-5. Physical Chemistry B, 1999, 103(48): 10572–10581. doi: 10.1021/
[ 4 ] Bhushan B. Nanotribology and nanomechanics[J]. Wear, 2005, jp990500i.
259(7-12): 1507–1531. doi: 10.1016/j.wear.2005.01.010. [20] Ghosh A, Subrahmanyam K S, Krishna K S, et al. Uptake of H2 and
[ 5 ] Patton S T, Zabinski J S. Failure mechanisms of a MEMS actuator in CO2 by graphene[J]. The Journal of Physical Chemistry C, 2008,
very high vacuum[J]. Tribology International, 2002, 35(6): 373–379. 112(40): 15704–15707. doi: 10.1021/jp805802w.
doi: 10.1016/S0301-679X(02)00018-X. [21] Ohba T, Kanoh H. Intensive edge effects of nanographenes in
[ 6 ] Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown molecular adsorptions[J]. The Journal of Physical Chemistry Letters,
graphene: the thinnest solid lubricant[J]. ACS Nano, 2011, 5(6): 2012, 3(4): 511–516. doi: 10.1021/jz2016704.
5107–5114. doi: 10.1021/nn2011865. [22] Stark R W, Drobek T, Heckl W M. Thermomechanical noise of a
[ 7 ] Peng Yitian, Wang Zhuoqiong, Zou Kun. Friction and wear free v-shaped cantilever for atomic-force microscopy[J].
properties of different types of graphene nanosheets as effective Ultramicroscopy, 2001, 86(1-2): 207–215. doi: 10.1016/S0304-
solid lubricants[J]. Langmuir, 2015, 31(28): 7782–7791. doi: 10.1021/ 3991(00)00077-2.
acs.langmuir.5b00422. [23] Sader J E, Sanelli J A, Adamson B D, et al. Spring constant
[ 8 ] Berman D, Erdemir A, Sumant A V. Graphene: a new emerging calibration of atomic force microscope cantilevers of arbitrary
lubricant[J]. Materials Today, 2014, 17(1): 31–42. doi: 10.1016/ shape[J]. The Review of Scientific Instruments, 2012, 83(10):
j.mattod.2013.12.003. 103705. doi: 10.1063/1.4757398.
[ 9 ] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect [24] Li Q, Kim K S, Rydberg A. Lateral force calibration of an atomic
in atomically thin carbon films[J]. Science, 2004, 306(5696): force microscope with a diamagnetic levitation spring system[J].
666–669. doi: 10.1126/science.1102896. Review of Scientific Instruments, 2006, 77(6): 065105. doi: 10.