Page 119 - 《摩擦学学报》2021年第5期
P. 119

708                                     摩   擦   学   学   报                                 第 41 卷

            区域变化不明显. 然而,由于多层石墨烯的边界效应                           [10]  Lee  C,  Wei  X,  Kysar  J  W,  et  al.  Measurement  of  the  elastic
            不显著,因此导致了石墨烯不同区域的平均摩擦力差                                properties and intrinsic strength of monolayer graphene[J]. Science,
                                                                   2008, 321(5887): 385–388. doi: 10.1126/science.1157996.
            别不明显.

                                                               [11]  Lee  C,  Wei  Xiaoding,  Li  Qunyang,  et  al.  Elastic  and  frictional
            3    结论                                                properties of graphene[J]. Physica Status Solidi (b), 2009, 246(11-
                                                                   12): 2562–2567. doi: 10.1002/pssb.200982329.
                a . 在锥形探针的作用下,单层石墨烯中心区域的                       [12]  Radisavljevic  B,  Radenovic  A,  Brivio  J,  et  al.  Single-layer  MoS2
            平均摩擦力明显大于其边界位置处的平均摩擦力;而                                transistors[J].  Nature  Nanotechnology,  2011,  6(3):  147–150.  doi:
            在球形探针的作用下,单层石墨烯的平均摩擦力随作                                10.1038/nnano.2010.279.

            用区域的变化不明显.                                         [13]  Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010,
                b. 对于多层石墨烯,无论是在锥形探针还是球形                            5(7): 487–496. doi: 10.1038/nnano.2010.89.
                                                               [14]  Wang  Zhuo,  Dong  Zhaogang,  Gu  Yinghong,  et  al.  Giant
            探针的作用下,其平均摩擦力随作用区域的变化均不
                                                                   photoluminescence   enhancement   in   tungsten-diselenide-gold
            明显.
                                                                   plasmonic hybrid structures[J]. Nature Communications, 2016, 7(1):
                c. 石墨烯的摩擦力随其厚度的增加而减小,而粘                            1–8. doi: 10.1038/ncomms11283.
            附力随其厚度的变化不明显.                                      [15]  Li  Qunyang,  Lee  C,  Carpick  R  W,  et  al.  Substrate  effect  on
                d. 石墨烯在球形探针作用下的摩擦强化效应强                             thickness-dependent  friction  on  graphene[J].  Physica  Status  Solidi
            于锥形探针作用下的摩擦强化程度,石墨烯的摩擦强                                (b), 2010, 247(11-12): 2909–2914. doi: 10.1002/pssb.201000555.
                                                               [16]  Zeng  Xingzhong,  Peng  Yitian,  Lang  Haojie.  A  novel  approach  to
            化效应随其厚度的增加而减弱.
                                                                   decrease friction of graphene[J]. Carbon, 2017, 118: 233–240. doi:
            参 考 文 献
                                                                   10.1016/j.carbon.2017.03.042.
            [  1  ]  Hornbeck  L  J.  The  DMD^TM  projection  display  chip:  a  MEMS-  [17]  Sasaki N, Kobayashi K, Tsukada M. Atomic-scale friction image of
                 based technology[J]. MRS Bulletin, 2001, 26(4): 325–327. doi: 10.  graphite  in  atomic-force  microscopy[J].  Physical  Review  B,
                 1557/mrs2001.72.                                  Condensed   Matter,   1996,   54(3):   2138–2149.   doi:
            [  2  ]  Yuan Songmei, Zhou Zhaoying, Wang Guohui, et al. MEMS-based  10.1103/physrevb.54.2138.
                 piezoelectric  array  microjet[J].  Microelectronic  Engineering,  2003,  [18]  Leenaerts O, Partoens B, Peeters F M. Adsorption ofH2O, NH3, CO,
                 66(1-4): 767–772. doi: 10.1016/S0167-9317(02)00997-8.  NO2,  and  NO  on  graphene:  a  first-principles  study[J].  Physical
            [  3  ]  Ernst  H,  Jachimowicz  A,  Urban  G  A.  High  resolution  flow  Review B, 2008, 77(12): 125416. doi: 10.1103/physrevb.77.125416.
                 characterization  in  Bio-MEMS[J].  Sensors  and  Actuators  [19]  Park  C,  Anderson  P  E,  Chambers  A,  et  al.  Further  studies  of  the
                 A:Physical,  2002,  100(1):  54–62.  doi:  10.1016/S0924-4247(02)  interaction of hydrogen with graphite nanofibers[J]. The Journal of
                 00187-5.                                          Physical Chemistry B, 1999, 103(48): 10572–10581. doi: 10.1021/
            [  4  ]  Bhushan  B.  Nanotribology  and  nanomechanics[J].  Wear,  2005,  jp990500i.
                 259(7-12): 1507–1531. doi: 10.1016/j.wear.2005.01.010.  [20]  Ghosh A, Subrahmanyam K S, Krishna K S, et al. Uptake of H2 and
            [  5  ]  Patton S T, Zabinski J S. Failure mechanisms of a MEMS actuator in  CO2  by  graphene[J].  The  Journal  of  Physical  Chemistry  C,  2008,
                 very high vacuum[J]. Tribology International, 2002, 35(6): 373–379.  112(40): 15704–15707. doi: 10.1021/jp805802w.
                 doi: 10.1016/S0301-679X(02)00018-X.           [21]  Ohba  T,  Kanoh  H.  Intensive  edge  effects  of  nanographenes  in
            [  6  ]  Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown  molecular adsorptions[J]. The Journal of Physical Chemistry Letters,
                 graphene:  the  thinnest  solid  lubricant[J].  ACS  Nano,  2011,  5(6):  2012, 3(4): 511–516. doi: 10.1021/jz2016704.
                 5107–5114. doi: 10.1021/nn2011865.            [22]  Stark R W, Drobek T, Heckl W M. Thermomechanical noise of a
            [  7  ]  Peng  Yitian,  Wang  Zhuoqiong,  Zou  Kun.  Friction  and  wear  free   v-shaped   cantilever   for   atomic-force   microscopy[J].
                 properties  of  different  types  of  graphene  nanosheets  as  effective  Ultramicroscopy,  2001,  86(1-2):  207–215.  doi:  10.1016/S0304-
                 solid lubricants[J]. Langmuir, 2015, 31(28): 7782–7791. doi: 10.1021/  3991(00)00077-2.
                 acs.langmuir.5b00422.                         [23]  Sader  J  E,  Sanelli  J  A,  Adamson  B  D,  et  al.  Spring  constant
            [  8  ]  Berman  D,  Erdemir  A,  Sumant  A  V.  Graphene:  a  new  emerging  calibration  of  atomic  force  microscope  cantilevers  of  arbitrary
                 lubricant[J].  Materials  Today,  2014,  17(1):  31–42.  doi:  10.1016/  shape[J].  The  Review  of  Scientific  Instruments,  2012,  83(10):
                 j.mattod.2013.12.003.                             103705. doi: 10.1063/1.4757398.
            [  9  ]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect  [24]  Li Q, Kim K S, Rydberg A. Lateral force calibration of an atomic
                 in  atomically  thin  carbon  films[J].  Science,  2004,  306(5696):  force  microscope  with  a  diamagnetic  levitation  spring  system[J].
                 666–669. doi: 10.1126/science.1102896.            Review  of  Scientific  Instruments,  2006,  77(6):  065105.  doi:  10.
   114   115   116   117   118   119   120   121   122   123   124