Page 107 - 《摩擦学学报》2021年第5期
P. 107
696 摩 擦 学 学 报 第 41 卷
36.46
Deionized water
27.37
Adhesion Scratch
22.86 1 320.9
1 000
18.29 y/μm
13.71 z/μm 500 Spalling
9.144 Furrow
0
4.572 0 500 1 000 1 500 1 737.3
100 μm 0.0 x/μm 100 μm
Steel ball
26.24
MWCNTs nanofluid
31.07
25.89 1 302.9 Pitting
Adhesion 1 000
20.71 y/μm
15.53 z/μm 500
10.36
0
5.178 0 500 1 000 1 500 1 737.3 Spalling
100 μm x/μm 100 μm
Steel ball 0.0
33.73
MoS 2 nanofluid
28.91
24.09 1 302.9
1 000 Furrow
19.27
14.45 z/μm y/μm 500
9.636
100 μm 4.818 0
Steel ball 0 500 1 000 1 500 1 737.3 100 μm
0.0 x/μm
28.49 MWCNTs: MoS 2 =1:1
24.43
18.63
1 320.9
14.90 1 000
11.18 z/μm y/μm 500 Scratch
7.452
3.726 Pitting
0.0 0.0 100 μm
100 μm 0 500 x/μm 1 000 1 500 1 737.3
Steel ball
27.56 MWCNTs: MoS 2 =2:1
23.51 Spalling
19.58 1 320.9
15.67 z/μm y/μm 1 000
11.75 500
7.833 Scratch
3.917
0.0 0.0 100 μm
100 μm 0 500 1 000 1 500 1 737.3
Steel ball x/μm
26.12 MWCNTs: MoS 2 =1:2
22.33 1 320.9
18.63 y/μm 1 000
14.91 z/μm
11.71 500
7.512
3.723 0.0
100 μm 0.0 0 500 1 000 100 μm
Steel ball x/μm 1 500 1 737.3
Fig. 8 Wear trajectory of sample surface and wear morphology of steel ball
图 8 样品表面磨痕与钢球磨损形貌
轴承”作用,并且部分MWCNTs在摩擦剪切作用下破 磨作用.
损,因此在表面形成碳膜 [23-24] ,也起到了一定的减摩抗 图10展示了复合纳米流体的抗磨减摩机理示意.