Page 109 - 《摩擦学学报》2021年第5期
P. 109

698                                     摩   擦   学   学   报                                 第 41 卷

                b. MWCNTs和MoS 质量分数分别为0.6%、1.2%                     critical micelle concentration of sodium dodecyl sulfate[J]. Colloids
                                 2
            时复合纳米流体配比最佳. 其在GCr15表面的润湿接                             and  Surfaces  B:Biointerfaces,  2004,  35(2):  119–124.  doi:
                                                                   10.1016/j.colsurfb.2004.02.014.
            触角约为63.04°,相比于去离子水降低了23.55%,相比
                                                               [  9  ]  Zhang  Yanbin,  Li  Changhe,  Jia  Dongzhou,  et  al.  Experimental
            单一组元的纳米流体降低了12.12%~20.13%. 同时,复
                                                                   evaluation of the workpiece surface quality of MoS 2 /CNT nanofluid
            合纳米流体平均摩擦系数为0.073,比使用去离子水降
                                                                   for  minimal  quantity  lubrication  in  grinding[J].  Journal  of
            低了61.98%,比单一组元的纳米流体降低了19.78%~                          Mechanical Engineering, 2018, 54(1): 161–170 (in Chinese) [张彦
            29.13%.                                                彬, 李长河, 贾东洲, 等. MoS 2 /CNTs混合纳米流体微量润滑磨削
                c. 最佳配比条件下的磨痕最浅,表面最为平整,                            加工表面质量试验评价[J]. 机械工程学报, 2018, 54(1): 161–170].
                                    3
                               −5
            体积磨损率为1.43×10  mm /(N·m). 磨痕内出现MoS 、                   doi: 10.3901/JME.2018.01.161.
                                                         2
                                                               [10]  Guan  Jiju,  Liu  Deli,  Wang  Yong,  et  al.  Tribological  properties  of
            MoO 和Fe (SO ) ,并出现C−C键、C−O−C键和O−C=
                     2
                         4 3
                 3
                                                                   nanofluid  prepared  by  composite  of  multi-walled  carbon  nanotube
            O键 .  由 此 说 明 [EMIm]BF -GA包 裹 的 MWCNTs和                and oleic acid[J]. Tribology, 2020, 40(3): 289–298 (in Chinese) [关
                                    4
            MoS 协同参与减摩抗磨,二者的叠层作用在摩擦副间                              集俱, 刘德利, 王勇, 等. MWCNTs复合物纳米流体的摩擦学性能
                2
            形成夹层结构,故具有优异减摩抗磨性能. 该复合纳                               [J]. 摩擦学学报, 2020, 40(3): 289–298]. doi: 10.16078/j.tribology.
            米流体可适应于内冷却、微量润滑等加工工艺.                                  2019223.
                                                               [11]  Li  Minxian,  Deng  Xianqin,  Guo  Peikang,  et  al.  Tribological
            参 考 文 献
                                                                   properties  and  mechanism  of  carbon  nanotubes  in  grease[J].
            [  1  ]  Mao  Cong,  Zou  Hongfu,  Huang  Yong,  et  al.  Analysis  of  heat  Lubrication Engineering, 2019, 44(4): 120–126 (in Chinese) [厉敏
                 transfer coefficient on workpiece surface during minimum quantity  宪, 邓先钦, 郭培康, 等. 碳纳米管在润滑脂中的摩擦学性能及机
                 lubricant  grinding[J].  The  International  Journal  of  Advanced  制研究[J]. 润滑与密封, 2019, 44(4): 120–126].
                 Manufacturing Technology, 2013, 66(1-4): 363–370. doi: 10.1007/  [12]  Kamila  S,  Venugopal  V  R.  Acoustics  and  rheological  studies  of
                 s00170-012-4330-x.                                aqueous  ethylene  glycol  blend  copper  oxide  nanofluids[J].
            [  2  ]  Peng Ruitao, Huang Xiaofang, Tang Xinzi, et al. Performance of a  Particulate  Science  and  Technology,  2019,  37(2):  131–140.  doi:
                 pressurized  internal-cooling  slotted  grinding  wheel  system[J].  The  10.1080/02726351.2017.1346736.
                 International Journal of Advanced Manufacturing Technology, 2018,  [13]  Liu  Chun,  Xia  Yanqiu,  Cao  Zhengfeng.  Conductivity  and
                 94(5-8): 2239–2254. doi: 10.1007/s00170-017-1014-6.  tribological properties of carbon nanotubes in grease[J]. Tribology,
            [  3  ]  Singh  H,  Sharma  V  S,  Singh  S,  et  al.  Nanofluids  assisted  2015, 35(4): 393–397 (in Chinese) [刘椿, 夏延秋, 曹正锋. 碳纳米
                 environmental friendly lubricating strategies for the surface grinding  管在润滑脂中的导电性和摩擦学性能研究[J]. 摩擦学学报, 2015,
                 of  titanium  alloy:  Ti 6 Al 4 V-ELI[J].  Journal  of  Manufacturing  35(4): 393–397]. doi: 10.16078/j.tribology.2015.04.006.
                 Processes, 2019, 39: 241–249. doi: 10.1016/j.jmapro.2019.02.004.  [14]  Shibe V, Chawla V. Erosion studies of cermet-coated ASTM A36
            [  4  ]  Huang Wei tai, Liu Wei shu, Wu D H. Investigations into lubrication  steel[J]. Industrial Lubrication and Tribology, 2019, 71(2): 242–252.
                 in  grinding  processes  using  MWCNTs  nanofluids  with  ultrasonic-  doi: 10.1108/ilt-01-2018-0001.
                 assisted  dispersion[J].  Journal  of  Cleaner  Production,  2016,  137:  [15]  Zhang  Xiaolei,  Zhang  Jie,  Zhu  Yong.  Raman  enhancement  and
                 1553–1559. doi: 10.1016/j.jclepro.2016.06.038.    structural  parameters  optimization  of  silver  nanoparticles/carbon
            [  5  ]  Wang  Yaogang,  Li  Changhe,  Zhang  Yanbin,  et  al.  Experimental  nanotubes composite structure[J]. Acta Optica Sinica, 2018, 38(4):
                 evaluation  of  the  lubrication  properties  of  the  wheel/workpiece  383–389 (in Chinese) [张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳
                 interface  in  MQL  grinding  with  different  nanofluids[J].  Tribology  米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018,
                 International,  2016,  99:  198–210.  doi:  10.1016/j.triboint.2016.03.  38(4): 383–389].
                 023.                                          [16]  Bourchak M, Juhany K A, Salah N, et al. Determining the tensile
            [  6  ]  Del Sol I, Gámez A J, Rivero A, et al. Tribological performance of  properties and dispersion characterization of CNTs in epoxy using
                 ionic  liquids  as  additives  of  water-based  cutting  fluids[J].  Wear,  tem and Raman spectroscopy[J]. Mechanics of Composite Materials,
                 2019, 426-427: 845–852. doi: 10.1016/j.wear.2019.01.109.  2020, 56(2): 215–226. doi: 10.1007/s11029-020-09874-6.
            [  7  ]  Inoue T, Yamakawa H. Micelle formation of nonionic surfactants in  [17]  Li Xinfang, Zhu Dongsheng, Wang Xianju, et al. Effect factor and
                 a  room  temperature  ionic  liquid,  1-butyl-3-methylimidazolium  function  mechanism  on  dispersion  and  stability  of  Cu
                 tetrafluoroborate: Surfactant chain length dependence of the critical  nanoparticles[J].  Chemical  Engineering  (China),  2007,  35(12):
                 micelle  concentration[J].  Journal  of  Colloid  and  Interface  Science,  46–50 (in Chinese) [李新芳, 朱冬生, 王先菊, 等. 纳米Cu分散稳定
                 2011, 356(2): 798–802. doi: 10.1016/j.jcis.2011.01.022.  性 能 影 响 因 素 及 作 用 机 理 研 究 [J].  化 学 工 程 ,  2007,  35(12):
            [  8  ]  Beyaz A, Oh W S, Reddy V P. Ionic liquids as modulators of the  46–50].
   104   105   106   107   108   109   110   111   112   113   114