Page 109 - 《摩擦学学报》2021年第5期
P. 109
698 摩 擦 学 学 报 第 41 卷
b. MWCNTs和MoS 质量分数分别为0.6%、1.2% critical micelle concentration of sodium dodecyl sulfate[J]. Colloids
2
时复合纳米流体配比最佳. 其在GCr15表面的润湿接 and Surfaces B:Biointerfaces, 2004, 35(2): 119–124. doi:
10.1016/j.colsurfb.2004.02.014.
触角约为63.04°,相比于去离子水降低了23.55%,相比
[ 9 ] Zhang Yanbin, Li Changhe, Jia Dongzhou, et al. Experimental
单一组元的纳米流体降低了12.12%~20.13%. 同时,复
evaluation of the workpiece surface quality of MoS 2 /CNT nanofluid
合纳米流体平均摩擦系数为0.073,比使用去离子水降
for minimal quantity lubrication in grinding[J]. Journal of
低了61.98%,比单一组元的纳米流体降低了19.78%~ Mechanical Engineering, 2018, 54(1): 161–170 (in Chinese) [张彦
29.13%. 彬, 李长河, 贾东洲, 等. MoS 2 /CNTs混合纳米流体微量润滑磨削
c. 最佳配比条件下的磨痕最浅,表面最为平整, 加工表面质量试验评价[J]. 机械工程学报, 2018, 54(1): 161–170].
3
−5
体积磨损率为1.43×10 mm /(N·m). 磨痕内出现MoS 、 doi: 10.3901/JME.2018.01.161.
2
[10] Guan Jiju, Liu Deli, Wang Yong, et al. Tribological properties of
MoO 和Fe (SO ) ,并出现C−C键、C−O−C键和O−C=
2
4 3
3
nanofluid prepared by composite of multi-walled carbon nanotube
O键 . 由 此 说 明 [EMIm]BF -GA包 裹 的 MWCNTs和 and oleic acid[J]. Tribology, 2020, 40(3): 289–298 (in Chinese) [关
4
MoS 协同参与减摩抗磨,二者的叠层作用在摩擦副间 集俱, 刘德利, 王勇, 等. MWCNTs复合物纳米流体的摩擦学性能
2
形成夹层结构,故具有优异减摩抗磨性能. 该复合纳 [J]. 摩擦学学报, 2020, 40(3): 289–298]. doi: 10.16078/j.tribology.
米流体可适应于内冷却、微量润滑等加工工艺. 2019223.
[11] Li Minxian, Deng Xianqin, Guo Peikang, et al. Tribological
参 考 文 献
properties and mechanism of carbon nanotubes in grease[J].
[ 1 ] Mao Cong, Zou Hongfu, Huang Yong, et al. Analysis of heat Lubrication Engineering, 2019, 44(4): 120–126 (in Chinese) [厉敏
transfer coefficient on workpiece surface during minimum quantity 宪, 邓先钦, 郭培康, 等. 碳纳米管在润滑脂中的摩擦学性能及机
lubricant grinding[J]. The International Journal of Advanced 制研究[J]. 润滑与密封, 2019, 44(4): 120–126].
Manufacturing Technology, 2013, 66(1-4): 363–370. doi: 10.1007/ [12] Kamila S, Venugopal V R. Acoustics and rheological studies of
s00170-012-4330-x. aqueous ethylene glycol blend copper oxide nanofluids[J].
[ 2 ] Peng Ruitao, Huang Xiaofang, Tang Xinzi, et al. Performance of a Particulate Science and Technology, 2019, 37(2): 131–140. doi:
pressurized internal-cooling slotted grinding wheel system[J]. The 10.1080/02726351.2017.1346736.
International Journal of Advanced Manufacturing Technology, 2018, [13] Liu Chun, Xia Yanqiu, Cao Zhengfeng. Conductivity and
94(5-8): 2239–2254. doi: 10.1007/s00170-017-1014-6. tribological properties of carbon nanotubes in grease[J]. Tribology,
[ 3 ] Singh H, Sharma V S, Singh S, et al. Nanofluids assisted 2015, 35(4): 393–397 (in Chinese) [刘椿, 夏延秋, 曹正锋. 碳纳米
environmental friendly lubricating strategies for the surface grinding 管在润滑脂中的导电性和摩擦学性能研究[J]. 摩擦学学报, 2015,
of titanium alloy: Ti 6 Al 4 V-ELI[J]. Journal of Manufacturing 35(4): 393–397]. doi: 10.16078/j.tribology.2015.04.006.
Processes, 2019, 39: 241–249. doi: 10.1016/j.jmapro.2019.02.004. [14] Shibe V, Chawla V. Erosion studies of cermet-coated ASTM A36
[ 4 ] Huang Wei tai, Liu Wei shu, Wu D H. Investigations into lubrication steel[J]. Industrial Lubrication and Tribology, 2019, 71(2): 242–252.
in grinding processes using MWCNTs nanofluids with ultrasonic- doi: 10.1108/ilt-01-2018-0001.
assisted dispersion[J]. Journal of Cleaner Production, 2016, 137: [15] Zhang Xiaolei, Zhang Jie, Zhu Yong. Raman enhancement and
1553–1559. doi: 10.1016/j.jclepro.2016.06.038. structural parameters optimization of silver nanoparticles/carbon
[ 5 ] Wang Yaogang, Li Changhe, Zhang Yanbin, et al. Experimental nanotubes composite structure[J]. Acta Optica Sinica, 2018, 38(4):
evaluation of the lubrication properties of the wheel/workpiece 383–389 (in Chinese) [张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳
interface in MQL grinding with different nanofluids[J]. Tribology 米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018,
International, 2016, 99: 198–210. doi: 10.1016/j.triboint.2016.03. 38(4): 383–389].
023. [16] Bourchak M, Juhany K A, Salah N, et al. Determining the tensile
[ 6 ] Del Sol I, Gámez A J, Rivero A, et al. Tribological performance of properties and dispersion characterization of CNTs in epoxy using
ionic liquids as additives of water-based cutting fluids[J]. Wear, tem and Raman spectroscopy[J]. Mechanics of Composite Materials,
2019, 426-427: 845–852. doi: 10.1016/j.wear.2019.01.109. 2020, 56(2): 215–226. doi: 10.1007/s11029-020-09874-6.
[ 7 ] Inoue T, Yamakawa H. Micelle formation of nonionic surfactants in [17] Li Xinfang, Zhu Dongsheng, Wang Xianju, et al. Effect factor and
a room temperature ionic liquid, 1-butyl-3-methylimidazolium function mechanism on dispersion and stability of Cu
tetrafluoroborate: Surfactant chain length dependence of the critical nanoparticles[J]. Chemical Engineering (China), 2007, 35(12):
micelle concentration[J]. Journal of Colloid and Interface Science, 46–50 (in Chinese) [李新芳, 朱冬生, 王先菊, 等. 纳米Cu分散稳定
2011, 356(2): 798–802. doi: 10.1016/j.jcis.2011.01.022. 性 能 影 响 因 素 及 作 用 机 理 研 究 [J]. 化 学 工 程 , 2007, 35(12):
[ 8 ] Beyaz A, Oh W S, Reddy V P. Ionic liquids as modulators of the 46–50].