Page 77 - 《摩擦学学报》2021年第4期
P. 77

520                                     摩   擦   学   学   报                                 第 41 卷

            弹的几率大,形成的地毯保护效应强. 综上原因,复合                          [  7  ]  Springer G S. Liquid droplet erosion[M]. New York: John Wiley &
            材料在100 PPI 0.8/PU在6.9 MPa-30 min、8.3 MPa-30 min        Sons Press, 1976.
                                                               [  8  ]  Mann  B  S,  Arya  V.  HVOF  coating  and  surface  treatment  for
            和10.3 MPa-30 min条件下质量损失均少于其他的复
                                                                   enhancing  droplet  erosion  resistance  of  steam  turbine  blades[J].
            合材料. 因此,采用小孔径,不需要很厚的金属棱,就
                                                                   Wear,  2003,  254(7-8):  652–667.  doi:  10.1016/S0043-1648(03)
            能使复合材料获得好的抗液滴冲蚀性能.
                                                                   00253-9.

            3    结论                                            [  9  ]  ASTM  G73-10,  Standard  test  method  for  liquid  impingement
                                                                   erosion  using  rotating  apparatus[S].  ASTM  International,  West
                a. 采用PIV系统,测量了液滴冲蚀试验时液滴的                           Consho hocken, 2010.
            速度和直径. 当管路压力增大时,不仅液滴速度增大,                          [10]  Luan  Daocheng,  Ding  Wucheng,  Li  Maohua.  Erosion-wear
                                                                   resistance  of  polyurethane-Si 3 N 4   composite[J].  Tribology,  2004,
            粒径略有增加,而且液滴数量增多,作用频率更大.
                                                                   24(3): 268–271 (in Chinese) [栾道成, 丁武成, 李茂华. 聚氨酯-
                b. 纯聚氨酯在高速液滴冲击下,表面形成裂纹,
                                                                   Si 3 N 4 陶瓷复合材料浆体冲蚀磨损性能研究[J]. 摩擦学学报, 2004,
            裂纹在横向和纵向不断扩展,造成材料大量剥落. 随
                                                                   24(3): 268–271]. doi: 10.16078/j.tribology.2004.03.017.
            着液滴冲击能量增加,复合材料抗高速液滴冲蚀性能                            [11]  Zhong Ping, Peng Engao, Li Jian, et al. Study of erosion behavior of
            明显优于纯聚氨酯,泡沫镍的孔径越小、体密度越大,                               polyurethane-urea  coating[J].  Tribology,  2007,  27(5):  447–450

            复合材料的抗冲蚀性能越好.                                          (in Chinese) [钟萍, 彭恩高, 李健, 等. 聚氨酯(脲)涂层冲蚀磨损性
                c. 复合材料中的金属骨架对水锤压力、应力波、                            能研究[J]. 摩擦学学报, 2007, 27(5): 447–450]. doi: 10.3321/j.issn:
            侧向射流和水力渗透四种作用有着很强的阻力,对树                                1004-0595.2007.05.010.
                                                               [12]  Dong Mengyao, Wang Chuan, Liu Hu, et al. Enhanced solid particle
            脂相有阴影保护和地毯保护效应;而树脂相能提供支
                                                                   erosion  properties  of  thermoplastic  polyurethane-carbon  nanotube
            撑效应,吸收液滴撞击的动能. 二者协同作用提高了
                                                                   nanocomposites[J].  Macromolecular  Materials  and  Engineering,
            复合材料的抗液滴冲蚀性能.
                                                                   2019, 304(5): 1900010. doi: 10.1002/mame.201900010.
                d. 复合材料100 PPI 0.8/PU由于具有密集的金属                 [13]  Qiao Xingnian, Chen Rongrong, Zhang Hongsen, et al. Outstanding
            骨架,表现出了最优的抗液滴冲蚀性能. 这表明采用                               cavitation erosion resistance of hydrophobic polydimethylsiloxane-
            小孔径和小体密度的泡沫镍,能使复合材料获得好的                                based polyurethane coatings[J]. Journal of Applied Polymer Science,

            抗液滴冲蚀性能.                                               2019, 136(25): 47668. doi: 10.1002/app.47668.
                                                               [14]  Bahramnia H, Mohammadian Semnani H, Habibolahzadeh A, et al.
            参 考 文 献
                                                                   Epoxy/polyurethane  nanocomposite  coatings  for  anti-erosion/wear
            [  1  ]  Budinski K G, Budinski M K. Engineering materials-properties and  applications:  a  review[J].  Journal  of  Composite  Materials,  2020,
                 selection[M]. New York: Prentice Hall Press, 2010.  54(22): 3189–3203. doi: 10.1177/0021998320908299.
            [  2  ]  Zhang  Zheyuan,  Zhang  Di,  Xie  Yonghui.  Experimental  study  on  [15]  Avar  G,  Meier-Westhues  U,  Casselmann  H,  et  al.  10.24-
                 water  droplet  erosion  resistance  of  coatings  (Ni60  and  WC-17Co)  Polyurethanes[M].  Polymer  Science:  A  Comprehensive  Reference.
                 sprayed by APS and HVOF[J]. Wear, 2019, 432-433: 202950. doi:  Amsterdam: Elsevier, 2012, 10: 411-441. doi: 10.1016/b978-0-444-
                 10.1016/j.wear.2019.202950.                       53349-4.00275-2.
            [  3  ]  Venturini  P,  Andreoli  M,  Borello  D,  et  al.  Modeling  of  water  [16]  Jiang  Shuai,  Li  Qifeng,  Zhao  Yuhua,  et  al.  Effect  of  surface
                 droplets  erosion  on  a  subsonic  compressor  cascade[J].  Flow,  silanization of carbon fiber on mechanical properties of carbon fiber
                 Turbulence  and  Combustion,  2019,  103(4):  1109–1125.  doi:  reinforced  polyurethane  composites[J].  Composites  Science  and
                 10.1007/s10494-019-00086-0.                       Technology,  2015,  110:  87–94.  doi:  10.1016/j.compscitech.2015.
            [  4  ]  Di Juan, Wang Shunsen, Yan Xiaojiang, et al. Experimental research  01.022.
                 on water droplet erosion resistance characteristics of turbine blade  [17]  Hatamie A, Rezvani E, Rasouli A S, et al. Electrocatalytic oxidation
                 substrate  and  strengthened  layers  materials[J].  Materials,  2020,  of ethanol on flexible three-dimensional interconnected nickel/gold
                 13(19): 4286. doi: 10.3390/ma13194286.            composite foams in alkaline media[J]. Electroanalysis, 2019, 31(3):
            [  5  ]  Fujisawa  N,  Komatsu  M,  Yamagata  T.  Experimental  study  on  504–511. doi: 10.1002/elan.201800490.
                 erosion  initiation  via  liquid  droplet  impingement  on  smooth  and  [18]  Wang J X, Duan D L, Yang X G, et al. Tensile behavior of nickel
                 rough walls[J]. Wear, 2020, 452-453: 203316. doi: 10.1016/j.wear.  foam/polyurethane co-continuous composites[J]. Materials Research
                 2020.203316.                                      Express, 2019, 6(9): 095103. doi: 10.1088/2053-1591/ab2f9d.
            [  6  ]  Heyman  F  J.  Liquid  impingement  erosion[J].  Wear,  1992,  18:  [19]  Heymann,   F.   Liquid   Impingement   Erosion[J].   ASM
                 221–232.                                          International:Materials Park, 1992, 18: 221–232.
   72   73   74   75   76   77   78   79   80   81   82