Page 77 - 《摩擦学学报》2021年第4期
P. 77
520 摩 擦 学 学 报 第 41 卷
弹的几率大,形成的地毯保护效应强. 综上原因,复合 [ 7 ] Springer G S. Liquid droplet erosion[M]. New York: John Wiley &
材料在100 PPI 0.8/PU在6.9 MPa-30 min、8.3 MPa-30 min Sons Press, 1976.
[ 8 ] Mann B S, Arya V. HVOF coating and surface treatment for
和10.3 MPa-30 min条件下质量损失均少于其他的复
enhancing droplet erosion resistance of steam turbine blades[J].
合材料. 因此,采用小孔径,不需要很厚的金属棱,就
Wear, 2003, 254(7-8): 652–667. doi: 10.1016/S0043-1648(03)
能使复合材料获得好的抗液滴冲蚀性能.
00253-9.
3 结论 [ 9 ] ASTM G73-10, Standard test method for liquid impingement
erosion using rotating apparatus[S]. ASTM International, West
a. 采用PIV系统,测量了液滴冲蚀试验时液滴的 Consho hocken, 2010.
速度和直径. 当管路压力增大时,不仅液滴速度增大, [10] Luan Daocheng, Ding Wucheng, Li Maohua. Erosion-wear
resistance of polyurethane-Si 3 N 4 composite[J]. Tribology, 2004,
粒径略有增加,而且液滴数量增多,作用频率更大.
24(3): 268–271 (in Chinese) [栾道成, 丁武成, 李茂华. 聚氨酯-
b. 纯聚氨酯在高速液滴冲击下,表面形成裂纹,
Si 3 N 4 陶瓷复合材料浆体冲蚀磨损性能研究[J]. 摩擦学学报, 2004,
裂纹在横向和纵向不断扩展,造成材料大量剥落. 随
24(3): 268–271]. doi: 10.16078/j.tribology.2004.03.017.
着液滴冲击能量增加,复合材料抗高速液滴冲蚀性能 [11] Zhong Ping, Peng Engao, Li Jian, et al. Study of erosion behavior of
明显优于纯聚氨酯,泡沫镍的孔径越小、体密度越大, polyurethane-urea coating[J]. Tribology, 2007, 27(5): 447–450
复合材料的抗冲蚀性能越好. (in Chinese) [钟萍, 彭恩高, 李健, 等. 聚氨酯(脲)涂层冲蚀磨损性
c. 复合材料中的金属骨架对水锤压力、应力波、 能研究[J]. 摩擦学学报, 2007, 27(5): 447–450]. doi: 10.3321/j.issn:
侧向射流和水力渗透四种作用有着很强的阻力,对树 1004-0595.2007.05.010.
[12] Dong Mengyao, Wang Chuan, Liu Hu, et al. Enhanced solid particle
脂相有阴影保护和地毯保护效应;而树脂相能提供支
erosion properties of thermoplastic polyurethane-carbon nanotube
撑效应,吸收液滴撞击的动能. 二者协同作用提高了
nanocomposites[J]. Macromolecular Materials and Engineering,
复合材料的抗液滴冲蚀性能.
2019, 304(5): 1900010. doi: 10.1002/mame.201900010.
d. 复合材料100 PPI 0.8/PU由于具有密集的金属 [13] Qiao Xingnian, Chen Rongrong, Zhang Hongsen, et al. Outstanding
骨架,表现出了最优的抗液滴冲蚀性能. 这表明采用 cavitation erosion resistance of hydrophobic polydimethylsiloxane-
小孔径和小体密度的泡沫镍,能使复合材料获得好的 based polyurethane coatings[J]. Journal of Applied Polymer Science,
抗液滴冲蚀性能. 2019, 136(25): 47668. doi: 10.1002/app.47668.
[14] Bahramnia H, Mohammadian Semnani H, Habibolahzadeh A, et al.
参 考 文 献
Epoxy/polyurethane nanocomposite coatings for anti-erosion/wear
[ 1 ] Budinski K G, Budinski M K. Engineering materials-properties and applications: a review[J]. Journal of Composite Materials, 2020,
selection[M]. New York: Prentice Hall Press, 2010. 54(22): 3189–3203. doi: 10.1177/0021998320908299.
[ 2 ] Zhang Zheyuan, Zhang Di, Xie Yonghui. Experimental study on [15] Avar G, Meier-Westhues U, Casselmann H, et al. 10.24-
water droplet erosion resistance of coatings (Ni60 and WC-17Co) Polyurethanes[M]. Polymer Science: A Comprehensive Reference.
sprayed by APS and HVOF[J]. Wear, 2019, 432-433: 202950. doi: Amsterdam: Elsevier, 2012, 10: 411-441. doi: 10.1016/b978-0-444-
10.1016/j.wear.2019.202950. 53349-4.00275-2.
[ 3 ] Venturini P, Andreoli M, Borello D, et al. Modeling of water [16] Jiang Shuai, Li Qifeng, Zhao Yuhua, et al. Effect of surface
droplets erosion on a subsonic compressor cascade[J]. Flow, silanization of carbon fiber on mechanical properties of carbon fiber
Turbulence and Combustion, 2019, 103(4): 1109–1125. doi: reinforced polyurethane composites[J]. Composites Science and
10.1007/s10494-019-00086-0. Technology, 2015, 110: 87–94. doi: 10.1016/j.compscitech.2015.
[ 4 ] Di Juan, Wang Shunsen, Yan Xiaojiang, et al. Experimental research 01.022.
on water droplet erosion resistance characteristics of turbine blade [17] Hatamie A, Rezvani E, Rasouli A S, et al. Electrocatalytic oxidation
substrate and strengthened layers materials[J]. Materials, 2020, of ethanol on flexible three-dimensional interconnected nickel/gold
13(19): 4286. doi: 10.3390/ma13194286. composite foams in alkaline media[J]. Electroanalysis, 2019, 31(3):
[ 5 ] Fujisawa N, Komatsu M, Yamagata T. Experimental study on 504–511. doi: 10.1002/elan.201800490.
erosion initiation via liquid droplet impingement on smooth and [18] Wang J X, Duan D L, Yang X G, et al. Tensile behavior of nickel
rough walls[J]. Wear, 2020, 452-453: 203316. doi: 10.1016/j.wear. foam/polyurethane co-continuous composites[J]. Materials Research
2020.203316. Express, 2019, 6(9): 095103. doi: 10.1088/2053-1591/ab2f9d.
[ 6 ] Heyman F J. Liquid impingement erosion[J]. Wear, 1992, 18: [19] Heymann, F. Liquid Impingement Erosion[J]. ASM
221–232. International:Materials Park, 1992, 18: 221–232.