Page 59 - 《摩擦学学报》2021年第4期
P. 59

502                                     摩   擦   学   学   报                                 第 41 卷

                                              表 5    图12极化曲线对应拟合参数表
                                     Table 5    Fitting parameters of polarization curves in Fig. 12

                                                                                         2
                    Condition        E corr /V    β a /(mV/dec)   β c /(mV/dec)   I corr /(A·cm )  COR RATE
                 Room temperature    −0.856         19.0             21.3           0.645           0.538
                 Ice/water ratio: 2∶1  −0.853       18.0             18.0           0.536           0.447
                 Ice/water ratio: 1∶1  −0.835       17.2             15.9           0.462           0.384
                 Ice/water ratio:1∶2  −0.817        16.7             14.5           0.373           0.311

            冲蚀磨损失重高于1∶2、1∶1冰水比的冰载荷冲蚀磨损                             1104–1110. doi: 10.1016/j.wear.2015.01.005.
            后DH32钢样的冲蚀磨损失重,与冰水比为2∶1的冰载                         [  9  ]  Nguyen V B, Nguyen Q B, Lim C Y H, et al. Effect of air-borne
                                                                   particle-particle  interaction  on  materials  erosion[J].  Wear,  2015,
            荷冲蚀磨损后的冲蚀磨损失重率相接近.
                                                                   322-323: 17–31. doi: 10.1016/j.wear.2014.10.014.
                d. 不同冰水比的冰载荷冲蚀磨损环境中,海冰冲
                                                               [10]  Nguyen V B, Nguyen Q B, Zhang Y W, et al. Effect of particle size
            蚀磨损和海水腐蚀发生耦合作用,共同对钢材表面产
                                                                   on  erosion  characteristics[J].  Wear,  2016,  348-349:  126–137.  doi:
            生破坏. 当转速较低时,腐蚀作用占主要地位,随着转                              10.1016/j.wear.2015.12.003.
            速升高,腐蚀与冲蚀磨损的综合作用更加明显,钢样                            [11]  Lin  Nan,  Arabnejad  H,  Shirazi  S  A,  et  al.  Experimental  study  of

            表面的冲蚀腐蚀坑的数量和深度均显著增加.                                   particle  size,  shape  and  particle  flow  rate  on  Erosion  of  stainless
                                                                   steel[J].   Powder   Technology,   2018,   336:   70–79.   doi:
            参 考 文 献
                                                                   10.1016/j.powtec.2018.05.039.
            [  1  ]  Zhao Weidong, Cao Junwei, Feng Guoqing, et al. Investigation on  [12]  Nguyen  Q  B,  Lim  C  Y  H,  Nguyen  V  B,  et  al.  Slurry  erosion
                 temperature  dependence  of  yielding  strength  for  marine  DH36  characteristics  and  erosion  mechanisms  of  stainless  steel[J].
                 steel[J]. Shipbuilding of China, 2018, 59(3): 108–115 (in Chinese)  Tribology International, 2014, 79: 1–7. doi: 10.1016/j.triboint.2014.
                 [赵伟栋, 曹俊伟, 冯国庆, 等. 船用DH36钢屈服强度温度依赖特               05.014.
                 性研究[J]. 中国造船, 2018, 59(3): 108–115]. doi: 10.3969/j.issn.1000-  [13]  Patel  M,  Patel  D,  Sekar  S,  et  al.  Study  of  solid  particle  erosion
                 4882.2018.03.011.                                 behaviour of SS 304 at room temperature[J]. Procedia Technology,
            [  2  ]  Rajput  A,  Park  J  H,  Hwan  Noh  S,  et  al.  Fresh  and  sea  water  2016, 23: 288–295. doi: 10.1016/j.protcy.2016.03.029.
                 immersion  corrosion  testing  on  marine  structural  steel  at  low  [14]  Arabnejad H, Shirazi S A, McLaury B S, et al. The effect of erodent
                 temperature[J].  Ships  and  Offshore  Structures,  2020,  15(6):  particle  hardness  on  the  erosion  of  stainless  steel[J].  Wear,  2015,
                 661–669. doi: 10.1080/17445302.2019.1664128.      332-333: 1098–1103. doi: 10.1016/j.wear.2015.01.017.
            [  3  ]  Kum S, Sahin B. A root cause analysis for Arctic Marine accidents  [15]  Nguyen Q B, Nguyen D N, Murray R, et al. The role of abrasive
                 from  1993  to  2011[J].  Safety  Science,  2015,  74:  206–220.  doi:  particle  size  on  erosion  characteristics  of  stainless  steel[J].
                 10.1016/j.ssci.2014.12.010.                       Engineering  Failure  Analysis,  2019,  97:  844–853.  doi:  10.1016/
            [  4  ]  Yamauchi  Y,  Mizuno  S,  Tsukuda  H.  Study  on  improvement  in  j.engfailanal.2019.01.020.
                 ramming performance of antarctic icebreaker[C]. In: The Nineteenth  [16]  Ahmed  S,  Thakare  O  P,  Shrivastava  R,  et  al.  A  review  on  slurry
                 International  Offshore  and  Polar  Engineering  Conference.  abrasion  of  hard  faced  steels[J].  Materials  Today:  Proceedings,
                 International Society of Offshore and Polar Engineers, Osaka, Japan,  2018, 5(2): 3524–3532. doi: 10.1016/j.matpr.2017.11.600.
                 2009.                                         [17]  Lu Qiankun, Wang Liwei, Xin Juncheng, et al. Corrosion evolution
            [  5  ]  Arabnejad  H,  Mansouri  A,  Shirazi  S  A,  et  al.  Development  of  and stress corrosion cracking of E690 steel for marine construction
                 mechanistic erosion equation for solid particles[J]. Wear, 2015, 332-  in  artificial  seawater  under  potentiostatic  anodic  polarization[J].
                 333: 1044–1050. doi: 10.1016/j.wear.2015.01.031.  Construction  and  Building  Materials,  2020,  238:  117763.  doi:
            [  6  ]  Kishor  B,  Chaudhari  G  P,  Nath  S  K.  Slurry  erosion  behaviour  of  10.1016/j.conbuildmat.2019.117763.
                 thermomechanically  treated  16Cr 5 Ni  stainless  steel[J].  Tribology  [18]  Zhang Y S, Zhu X M, Zhong S H. Effect of alloying elements on the
                 International,  2018,  119:  411–418.  doi:  10.1016/j.triboint.2017.11.  electrochemical  polarization  behavior  and  passive  film  of  Fe-Mn
                 025.                                              base  alloys  in  various  aqueous  solutions[J].  Corrosion  Science,
            [  7  ]  Javaheri  V,  Porter  D,  Kuokkala  V  T.  Slurry  erosion  of  steel  -  2004, 46(4): 853–876. doi: 10.1016/j.corsci.2003.09.002.
                 Review of tests, mechanisms and materials[J]. Wear, 2018, 408-409:  [19]  Sun Feilong, Ren Shuai, Li Zhong, et al. Comparative study on the
                 248–273. doi: 10.1016/j.wear.2018.05.010.         stress corrosion cracking of X70 pipeline steel in simulated shallow
            [  8  ]  Xie  Yongsong,  Jiang  Jiaren,  Tufa  K  Y,  et  al.  Wear  resistance  of  and  deep  sea  environments[J].  Materials  Science  and  Engineering:
                 materials  used  for  slurry  transport[J].  Wear,  2015,  332-333:  A, 2017, 685: 145–153. doi: 10.1016/j.msea.2016.12.118.
   54   55   56   57   58   59   60   61   62   63   64