Page 66 - 《摩擦学学报》2021年第3期
P. 66

第 3 期                 李云凯, 等: 仿生猪笼草结构的水润滑轴承摩擦学性能有限元分析研究                                      355

                                             Velocity                                           Velocity
                                                    15.0
                                                                                                       15.0
                                                    11.3                                               11.3
                                                    7.50                                               7.50
                                                    3.75                                               3.75
                                               (m/s)  0.00                                        (m/s)  0.00
                          (a) Crescent texture                           (b) Bionic wax crystal texture

                                             Velocity                                           Velocity
                                                    15.0                                               15.0
                                                    11.3                                               11.3
                                                    7.50                                               7.50
                                                    3.75                                               3.75
                                               (m/s)                                              (m/s)  0.00
                                                    0.00
                      (c) First-order ridged texture                     (d) Second-order ridged texture

                        Fig. 13  Streamline at the section of CC1006 and DR0102 textures at the rotational speed of 300 r/min
                               图 13    转速为300 r/min时型号CC1006和DR0102织构截面处水膜的流迹线图

            适用于中速中载的条件,此时其拥有优异的水膜承载                            [  8  ]  Liu Bo, Jiang Peng, Li Xuzhao, et al. Drag-reduction bionic research

            能力与减摩性能.                                               on riblet surfaces of shark skin[J]. Materials Review, 2008, 22(7):
                                                                   14–17, 21 (in Chinese) [刘博, 姜鹏, 李旭朝, 等. 鲨鱼盾鳞肋条结
            参 考 文 献                                                构的减阻仿生研究进展[J]. 材料导报, 2008, 22(7): 14–17, 21]. doi:
                                                                   10.3321/j.issn:1005-023X.2008.07.004.
            [  1  ]  Barwell F T. Effect of surface structure, composition and texture on
                                                               [  9  ]  Pu  Xia,  Li  Guangji,  Liu  Yunhong.  Progress  and  perspective  of
                 friction  under  boundary  conditions[J].  Proceedings  of  the  Royal
                                                                   studies  on  biomimetic  shark  skin  drag  reduction[J].  ChemBioEng
                 Society  of  London,  1952,  212(1111):  508–512.  doi:  10.1098/rspa.
                                                                   Reviews, 2016, 3(1): 26–40. doi: 10.1002/cben.201500011.
                 1952.0255.
                                                               [10]  Qian Shanhua, Wang Qingliang. Research on friction behavior from
            [  2  ]  Wos  S,  Koszela  W,  Pawlus  P.  Comparing  tribological  effects  of
                                                                   bovine knee articular cartilage[J]. Tribology, 2006, 26(5): 397–401
                 various   chevron-based   surface   textures   under   lubricated
                                                                   (in Chinese) [钱善华, 王庆良. 牛膝关节软骨的摩擦行为研究[J].
                 unidirectional  sliding[J].  Tribology  International,  2020,  146:
                                                                   摩 擦 学 学 报 ,  2006,  26(5):  397–401].  doi:  10.3321/j.issn:1004-
                 106205. doi: 10.1016/j.triboint.2020.106205.
                                                                   0595.2006.05.001.
            [  3  ]  Wang Zhiqiang, Fu Qi, Wood R J K, et al. Influence of bionic non-
                                                               [11]  Gaume L, Gorb S, Rowe N. Function of epidermal surfaces in the
                 smooth  surface  texture  on  tribological  characteristics  of  carbon-
                                                                   trapping efficiency of Nepenthes alata pitchers[J]. New Phytologist,
                 fiber-reinforced polyetheretherketone under seawater lubrication[J].
                                                                   2002, 156(3): 479–489. doi: 10.1046/j.1469-8137.2002.00530.x.
                 Tribology International, 2020, 144: 106100. doi: 10.1016/j.triboint.
                                                               [12]  Gorb E V, Gorb S N. The effect of surface anisotropy in the slippery
                 2019.106100.
                                                                   zone of Nepenthes alata pitchers on beetle attachment[J]. Beilstein
            [  4  ]  Feldshtein  E  E,  Dyachkova  L  N.  Wear  minimization  for  highly
                                                                   Journal of Nanotechnology, 2011, 2: 302–310. doi: 10.3762/bjnano.
                 loaded iron-based MMCs due to the formation of spongy-capillary
                                                                   2.35.
                 texture on the friction surface[J]. Wear, 2020, 444-445: 203161. doi:
                                                               [13]  Bauer U, Bohn H F, Federle W. Harmless nectar source or deadly
                 10.1016/j.wear.2019.203161.
                                                                   trap:  Nepenthes  pitchers  are  activated  by  rain,  condensation  and
            [  5  ]  Ji Min, Xu Jinyang, Chen Ming, et al. Enhanced hydrophilicity and
                                                                   nectar[J]. Proceedings of the Royal Society of London B: Biological
                 tribological  behavior  of  dental  zirconia  ceramics  based  on
                                                                   Sciences, 2008, 275(1632): 259–265. doi: 10.1098/rspb.2007.1402.
                 picosecond laser surface texturing[J]. Ceramics International, 2020,
                                                               [14]  Zhang  Pengfei,  Zhang  Deyuan,  Chen  Huawei.  Microstructure  and
                 46(6): 7161–7169. doi: 10.1016/j.ceramint.2019.11.210.
                                                                   wettability character of nepenthes’ pitcher surfaces[J]. Transactions
            [  6  ]  Federle W, Barnes W J, Baumgartner W, et al. Wet but not slippery:  of  the  Chinese  Society  for  Agricultural  Machinery,  2014,  45(1):
                 Boundary friction in tree frog adhesive toe pads[J]. Journal of the  341–345 (in Chinese) [张鹏飞, 张德远, 陈华伟. 猪笼草内表面微
                 Royal  Society,  Interface,  2006,  3(10):  689–697.  doi:  10.1098/rsif.  观结构及其浸润性研究[J]. 农业机械学报, 2014, 45(1): 341–345].
                 2006.0135.                                        doi: 10.6041/j.issn.1000-1298.2014.01.052.
            [  7  ]  Baum M J, Kovalev A E, Michels J, et al. Anisotropic friction of the  [15]  Hsu  C  P,  Lin  Yumin,  Chen  Poyu.  Hierarchical  structure  and
                 ventral  scales  in  the  snake  lampropeltis  getula  californiae[J].  multifunctional  surface  properties  of  carnivorous  pitcher  plants
                 Tribology Letters, 2014, 54(2): 139–150. doi: 10.1007/s11249-014-  nepenthes[J]. JOM: the journal of the Minerals, Metals & Materials
                 0319-y.                                           Society, 2015, 67(4): 744–753. doi: 10.1007/s11837-015-1349-0.
   61   62   63   64   65   66   67   68   69   70   71