Page 46 - 《摩擦学学报》2020年第4期
P. 46
456 摩 擦 学 学 报 第 40 卷
(a) F F Oil track F F starvation[J]. Journal of Tribology, 1971, 93(3): 349–361.
Oil Oil [ 3 ] Chiu Y. An analysis and prediction of lubricant film starvation in
rolling contact systems[J]. ASLE Transactions, 1974, 17(1): 22–35.
(b)
doi: 10.1080/05698197408981435.
Stell ball
[ 4 ] Pemberton J, Cameron A. A mechanism of fluid replenishment in
Hertzian contact zone
elastohydrodynamic contacts[J]. Wear, 1976, 37: 185–90. doi:
Oil Oil
10.1016/0043-1648(76)90190-3.
[ 5 ] Stadler K, Izumi N, Morita T, et al. Estimation of cavitation length
(c)
Stell ball
in EHL rolling point contact[J]. Journal of Tribology, 2008, 130(3):
Hertzian contact zone
F cap F cap 031502. doi: 10.1115/1.2919780.
Oil Oil [ 6 ] Van Emden E, Venner C H, Morales-Espejel G E. Aspects of flow
and cavitation around an EHL contact[J]. Tribology International,
Fig. 10 Schematic diagram of replenishment on free surface
2016, 95: 435–448. doi: 10.1016/j.triboint.2015.11.042.
and inlet zone
[ 7 ] Jacod B, Pubilier F, Cann P M E, et al. An analysis of track
图 10 自由表面及入口区回流原理示意图
replenishment mechanisms in the starved regime[J]. Tribology
成的润滑油轨道宽度,钢球和侧油带之间存在一定的 Series, 1999, 36(99): 483–492.
[ 8 ] Han Bing, Wang Wenzhong, Zhao Ziqiang. Oil replenishment
间隙,润滑油回流依旧很缓慢,如图10(b)所示. 当某一
mechanism of lubricated contact at low speed[J]. Tribology, 2016,
承载较大的钢球滚过时,钢球将接触到侧油带,钢球- 36(3): 341–347 (in Chinese) [韩兵, 王文中, 赵自强. 低速下润滑接
外圈微间隙所产生的毛细力将促使两侧油带中的润 触区补充供油机制的研究[J]. 摩擦学学报, 2016, 36(3): 341–347].
滑油快速回流到接触区附近,形成入口区补充供油, [ 9 ] Liu C L, Guo F, Wong P L, et al. Tribological behaviour of surfaces
如图10(c)所示. 图8反映出毛细力的作用需要一定时 with stepped wettability under limited lubricant supply[J]. Tribology
International, 2020, 141: 105880. doi: 10.1016/j.triboint.2019.
间积累. 图9反映出毛细力作用与球环间形成的间隙
105880.
大小密切相关,间隙越小,作用越明显. 在当前载荷条 [10] Ali F, Křupka I, Hartl M. Enhancing the parameters of starved EHL
件下钢球在轴承中的运动是1个不断卸载又重新加载 point conjunctions by artificially induced replenishment[J]. Tribol
的过程. 当钢球滚至测试区域时,载荷不断增大,钢球 International, 2013, 66: 134–142. doi: 10.1016/j.triboint.2013.
与外圈之间间隙不断减小. 毛细力作用不断增强,有 05.003.
[11] Liang H, Guo D, Ma L R, et al. Experimental investigation of
效促进了两侧油带回流形成入口区补充供油.
centrifugal effects on lubricant replenishment in the starved regime
3 结论 at high speeds[J]. Tribology Letter, 2015, 59(3): 1–9.
[12] Li X M, Zhou G Y, Guo F, et al. Enhanced lubricant replenishment
a. 当轴承速度升高或供油量减小时,会发生乏 by angled surface velocities in EHL contacts[J]. Tribology
油,造成油膜厚度下降. 入口区供油分布直接决定了 International, 2020, 145: 106132. doi: 10.1016/j.triboint.2019.
106132.
接触区内的油膜形成.
[13] Gershuni L, Larson M G, Lugt P M. Lubricant replenishment in
b. 速度较低或供油量较大时,接触区出口存在气
rolling bearing contacts[J]. Tribology Transactions, 2008, 51(5):
穴,气穴的长度随速度和润滑油黏度的增加而增大, 643–651. doi: 10.1080/10402000802192529.
气穴过长将导致下一接触区入口乏油. [14] Cen H, Lugt P M. Replenishment of the EHL contacts in a grease
c. 乏油情况下,轴承内部钢球和外圈接触区入口 lubricated ball bearing[J]. Tribology International, 2019, 6: 106064.
[15] Huang Ping, Luo Jianbin, Zou Qian, et al. Investigation into
补充供油主要依赖钢球与外圈形成的接触间隙产生
measuring nanometer lubrication film thickness by relative light
的毛细力作用诱导两侧油带回流,而自由表面上的侧
intensity principle[J]. Lubrication Engineering, 1995(1): 32–34
油带在表面张力作用下产生的回流非常微弱. (in Chinese) [黄平, 雒建斌, 邹茜, 等. 相对光强原理测量纳米级润
滑薄膜厚度的研究[J]. 润滑与密封, 1995(1): 32–34].
参 考 文 献
[16] Hamrock B J, Dowson D. Isothermal elastohydrodynamic
[ 1 ] Peng Chaolin, Xie Xiaopeng, Chen Zhen. Research on relationship lubrication of point contacts part Ⅲ-fully flooded results[J]. Journal
between lubrication factors and failure mechanism of rolling of Lubrication Technology, 1977, 99(2): 264–275. doi:
bearing[J]. Lubrication Engineering, 2015, 40(8): 26–30 10.1115/1.3453074.
(in Chinese) [彭朝林, 谢小鹏, 陈祯. 润滑因素与滚动轴承失效的 [17] Braun M J, Hannon W M. Cavitation formation and modelling for
关系研究[J]. 润滑与密封, 2015, 40(8): 26–30]. doi: 10.3969/j.issn. fluid film bearings: A review[J]. Proceedings of the Institution of
0254-0150.2015.08.006. Mechanical Engineers Part J-Journal of Engineering Tribology,
[ 2 ] Wedeven L D, Evans D, Cameron A. Optical analysis of ball bearing 2016, 224(9): 839–863.