Page 96 - 《高原气象》2025年第3期
P. 96
高 原 气 象 44 卷
654
and scale-dependent relationships between NDVI and climatic fac‐ 10. 1175/1520-0477 (1997) 078 <2837: AOOTGH> 2. 0. CO; 2.
tors—A case study in Qinghai-Tibet Plateau, China[J]. Ecological Riley C, Rupper S, Steenburgh J W, et al, 2021. Characteristics of
Indicators, 20: 170-176. DOI: 10. 1016/j. ecolind. 2012. 02. 007. historical precipitation in high mountain Asia based on a 15-year
He Q, Tao Y, Liu B, et al, 2016. Study on the satellite-based precipi‐ high resolution dynamical downscaling[J]. Atmosphere, 12(3):
tation downscaling algorithm in Tianshan mountain[C]. IEEE In‐ 355. DOI: 10. 3390/atmos12030355.
ternational Geoscience and Remote Sensing Symposium Roushangar K, Alizadeh F, 2019. A multiscale spatio-temporal frame‐
(IGARSS), 605-608. DOI: 10. 1109/IGARSS. 2016. 7729151. work to regionalize annual precipitation using k-means and self-
Huffman G J, Adler R F, Bolvin D T, et al, 2007. The TRMM multis‐ organizing map technique[J]. Journal of Mountain Science, 15
atellite precipitation analysis (TMPA): Quasi-global, multiyear, (7): 1481-1497. DOI: 10. 1007/s11629-017-4684-5.
combined-sensor precipitation estimates at fine scales [J]. Journal Wang H, Zhao C Y, Zang F, et al, 2022a. Spatiotemporal patterns of
of Hydrometeorology, 8(1): 38-55. DOI: 10. 1175/JHM560. 1. precipitation based on the Bayesian maximum entropy method in
Huffman G J, Bolvin D T, 2013. Version 1. 2 GPCP one-degree daily a typical catchment of the Heihe River watershed, northwest Chi‐
precipitation data set documentation[J]. WDC-A, NCDC, Ashe‐ na[J]. International Journal of Digital Earth, 15(1): 911-933.
ville, NC. DOI: 10. 1080/17538947. 2022. 2083248.
Immerzeel W W, Rutten M M, Droogers P, 2009. Spatial downscal‐ Wang H, Zang F, Zhao C Y, et al, 2022b. A GWR downscaling
ing of TRMM precipitation using vegetative response on the Iberi‐ method to reconstruct high-resolution precipitation dataset based
an Peninsula[J]. Remote Sensing of Environment, 113(2): 362- on GSMaP-Gauge data: A case study in the Qilian Mountains,
370. DOI: 10. 1016/j. rse. 2008. 10. 004. Northwest China[J]. Science of the Total Environment, 810:
Li XY, Chen S, Liang ZQ, et al, 2021. Performance assessment of 152066. DOI: 10. 1016/j. scitotenv. 2021. 152066.
GSMaP and GPM IMERG products during Typhoon Mangkhut Xie P P, Arkin P A, 1997. Global precipitation: A 17-year monthly
[J]. Atmosphere, 12 (2): 134. DOI: 10. 3390/atmos12020134. analysis based on gauge observations, satellite estimates, and nu‐
Liu C L, Li W L, Wang W Y, et al, 2021. Quantitative spatial analy‐ merical model outputs[J]. Bulletin of the American Meteorologi‐
sis of vegetation dynamics and potential driving factors in a typi‐ cal Society, 78(11): 2539-2558. DOI: 10. 1175/1520-0477
cal alpine region on the northeastern Tibetan Plateau using the (1997) 078 <2539: gpayma> 2. 0. co; 2.
Google Earth Engine[J]. Catena, 206: 105500. DOI: 10. 1016/j. Xu S G, Wu C Y, Wang L, et al, 2015. A new satellite-based month‐
catena. 2021. 105500. ly precipitation downscaling algorithm with non-stationary rela‐
Lu D, Yong B, 2018. Evaluation and hydrological utility of the latest tionship between precipitation and land surface characteristics
GPM IMERG V5 and GSMaP V7 precipitation products over the [J]. Remote Sensing of Environment, 162: 119-140. DOI: 10.
Tibetan Plateau[J]. Remote Sensing, 10(12): 2022. DOI: 10. 1016/j. rse. 2015. 02. 024.
3390/rs10122022. Zhan C S, Han J, Hu S, et al, 2018. Spatial downscaling of GPM an‐
Lu D, Yong B, 2020. A preliminary assessment of the gauge-adjusted nual and monthly precipitation using regression-based algorithms
near-real-time GSMaP precipitation estimate over Mainland China in a mountainous area[J]. Advances in Meteorology, 1506017.
[J]. Remote Sensing, 12(1): 141. DOI: 10. 3390/rs12010141. DOI: 10. 1155/2018/1506017.
Lu X Y, Tang G Q, Wang X Q, et al, 2019. Correcting GPM IMERG Zhang H H, Loáiciga H A, Ha D, et al, 2020. Spatial and temporal
precipitation data over the Tianshan Mountains in China[J]. Jour‐ downscaling of TRMM precipitation with novel algorithms [J].
nal of Hydrology, 575: 1239-1252. DOI: 10. 1016/j. jhydrol. Journal of Hydrometeorology, 21 (6): 1259-1278. DOI: 10.
2019. 06. 019. 1175/JHM-D-19-0289. 1.
Ma Z Q, Xu J T, He K, et al, 2020. An updated moving window al‐ Zhang Y Y, Li Y G, Ji X, et al, 2018. Fine-resolution precipitation
gorithm for hourly-scale satellite precipitation downscaling: A mapping in a mountainous watershed: Geostatistical downscaling
case study in the Southeast Coast of China[J]. Journal of Hydrol‐ of TRMM products based on environmental variables[J]. Remote
ogy, 581: 124378. DOI: 10. 1016/j. jhydrol. 2019. 124378. Sensing, 10(1): 119. DOI: 10. 3390/rs10010119.
Mega T, Ushio T, Matsuda T, et al, 2019. Gauge-adjusted global sat‐ 范娜, 谢高地, 张昌顺, 等, 2012. 2001 年至 2010 年澜沧江流域植
ellite mapping of precipitation[J]. IEEE Transactions on Geosci‐ 被覆盖动态变化分析[J]. 资源科学, 34 (7): 1222-1231. Fan
ence and Remote Sensing, 57 (4): 1928-1935. DOI: 10. 1109/ N, Xie G D, Zhang C S, et al, 2012. Spatial-temporal dynamic
TGRS. 2018. 2870199. changes of vegetation cover in Lancang River Basin during 2001-
Ning S W, Song F, Udmale P, et al, 2017. Error analysis and evalua‐ 2010[J]. Resources Science, 34(7): 1222-1231.
tion of the latest GSMaP and IMERG precipitation products over 胡金明, 何大明, 李运刚, 2011. 从湿季降水分异论哀牢山季风交
Eastern China[J]. Advances in Meteorology, 2017: 1803492. 汇[J]. 地球科学进展, 26(2): 183-192. Hu J M, He D M, Li Y
DOI: 10. 1155/2017/1803492. G, 2011. Discussion on monsoons’ interfacing around Ailaoshan
Peterson T C, Vose R S, 1997. An overview of the global historical through analyzing regional variation of wet season rainfall[J].
climatology network temperature database[J]. Bulletin of the Advances in Earth Science, 26(2): 183-192.
American Meteorological Society, 78(12): 2837-2849. DOI: 胡雪儿, 董晓华, 马耀明, 等, 2023. 澜沧江流域卫星产品降尺度与