Page 95 - 《高原气象》2025年第3期
P. 95

3 期               汪  红等:基于GWR降尺度的哀牢山2000 -2020年降水时空变化特征研究                                  653




















                                图10 不同插值方法降水量(单位: mm)结果对比图(以2020年8月的数据为例)
                     Fig. 10 The comparisons of precipitation results (unit: mm) by different interpolation methods: EBK (Empirical
                              Bayesian Kriging) (a), AUNSPLINE method (b), and GWR downscaling method (c) in
                                           this study (taking data in August 2020 as an example)
                 表1  2020年8月不同插值方法所得降水量与站点实测                        dus  Basin (UIB)[J]. Science  of  the  Total  Environment,  784:
                                  数据对比                              147140. DOI: 10. 1016/j. scitotenv. 2021. 147140.
                Table 1  The comparisons of precipitation by different   Arulraj M, Barros A P, 2019. Improving quantitative precipitation es‐
                   interpolation methods and from stations, taking   timates  in  mountainous  regions  by  modelling  low--level  seeder-
                        data in August 2020 as an example           feeder  interactions  constrained  by  Global  Precipitation  Measure‐
                                                                    ment  Dual-frequency  Precipitation  Radar  measurements[J]. Re‐
                 站点     站点数据       EBK    AUNSPLINE    GWR
                                                                    mote  Sensing  of  Environment,  231:  111213. DOI:  10. 1016/j.
                 编号       /mm      /mm       /mm       /mm
                                                                    rse. 2019. 111213.
                  1      425. 6   413. 7    145. 5     346. 7
                                                                 Ashouri H, Hsu K L, Sorooshian S, et al, 2015. PERSIANN-CDR
                  2      113. 1   137. 1     37. 2     247. 3       daily precipitation climate data record from multisatellite observa‐
                  3      186. 6   195. 2     62. 3     283. 4       tions  for  hydrological  and  climate  studies[J]. Bulletin  of  the
                                                                    American  Meteorological  Society,  96 (1):  69-84. DOI:  10.
                  4      170. 4   179. 8     46. 1     165. 7
                                                                    1175/BAMS-D-13-00068. 1.
                  5      432. 9   428. 2    301. 5     404. 8
                                                                 Aslami F, Ghorbani A, Sobhani B, et al, 2019. Comprehensive com‐
                                                                    parison of daily IMERG and GSMaP satellite precipitation prod‐
               数据的空间细节得到明显丰富, 比原始数据更能满
                                                                    ucts  in  Ardabil  Province,  Iran[J]. International  Journal  of  Re‐
               足地形复杂山区降水时空特征研究的需求。
                                                                    mote  Sensing,  40(8):  3139-3153. DOI:  10. 1080/01431161.
                  (2)   哀 牢 山 的 年 均 降 水 量 为 759. 2~1761. 7          2018. 1539274.
               mm, 存在明显的时空差异, 且降水量在一定的海                          Beck H E, van Dijk A, Levizzani V, et al, 2017. MSWEP: 3-hourly
               拔(1200~1400 m)处存在高值区。降水量从 2 -12                      0. 25 degrees global gridded precipitation (1979-2015) by merg‐
               月呈先增加后降低的趋势, 在 7 月达到峰值。1 月                           ing gauge, satellite, and reanalysis data[J]. Hydrology and Earth
                                                                    System  Sciences,  21 (1):  589-615. DOI:  10. 5194/hess-21-
               降水量的年际波动大, 受大气环流的影响显著。月
                                                                    589-2017.
               降水的空间分布特征与年降水基本一致。
                                                                 Brunsdon C, Fotheringham A S, Charlton M E, 1996. Geographically
                  (3)  2000 -2020 年, 哀牢山年降水量的均值在                    Weighted Regression: a method for exploring spatial nonstation‐
               时间上的变化趋势不显著。哀牢山多数地区的年                                arity[J]. Geographical Analysis,  28:  281-298. DOI:  10. 1111/
               降水量呈减少趋势, 呈增加趋势的地区集中在哀牢                              j. 1538-4632. 1996. tb00936. x.
               山东南部。从月尺度上看, 1 月的降水量显著增                           Chen M Y, Xie P P, Janowiak J E, et al, 2002. Global land precipita‐
                                                                    tion: a 50-yr monthly analysis based on gauge observations[J].
               加, 5 月显著减少, 而其他月份的降水变化均不
                                                                    Journal of Hydrometeorology, 3(3): 249-266. DOI: 10. 1175/
               显著。
                                                                    1525-7541 (2002) 003 <0249: GLPAYM> 2. 0. CO; 2.
               参考文献(References):                                 Darand M, Siavashi Z, 2021. An evaluation of Global Satellite Map‐
                                                                    ping of Precipitation (GSMaP) datasets over Iran[J]. Meteorolo‐
               Arshad A, Zhang W C, Zhang Z J, et al, 2021. Reconstructing high-  gy and Atmospheric Physics, 133 (3): 911-923. DOI: 10. 1007/
                  resolution gridded precipitation data using an improved downscal‐  s00703-021-00789-y.
                  ing approach over the high-altitude mountain regions of Upper In‐  Gao Y, Huang J, Li S, et al, 2012. Spatial pattern of non-stationarity
   90   91   92   93   94   95   96   97   98   99   100