Page 30 - 《高原气象》2025年第3期
P. 30
高 原 气 象 44 卷
588
ed surface climatology[J]. Australian Meteorological and Ocean‐ mance of Noah-MP LSM with GLDAS forcing data over Qinghai-
ographic Journal, 63(1): 65-82. DOI: 10. 1071/ES13005. Tibetan Plateau[J]. Plateau Meteorology, 39 (3): 486-498.
Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah DOI: 10. 7522/j. issn. 1000-0534. 2019. 00060.
land surface model with multi-parameterization options (Noah ‐ 李开明, 李绚, 王翠云, 等, 2013. 黄河源区气候变化的环境效应研
MP): 1. Model description and evaluation with local‐scale mea‐ 究[J]. 冰 川 冻 土 , 35(5): 1183-1192. DOI: 10. 7522/i. issn.
surements[J]. Journal of Geophysical Research: Atmospheres, 1000-0240. 2013. 0133. Li K M, Li X, Wang C Y, et al, 2013.
116: D12109. DOI: 10. 1029/2010JD015140. Research on the environmental effect caused by climate change in
Peixoto J, Oort A H, 1992. Physics of climate[M]. NewYork: Wood‐ the Source Region of the Yellow River[J]. Journal Of Glaciology
bury. And Geocryology, 35(5): 1183-1192. DOI: 10. 7522/i. issn.
Pielke R, Avissar R, 1990. Influence of landscape structure on local 1000-0240. 2013. 0133.
and regional climate[J]. Landscape Ecology, 4: 133-155. DOI: 李倩, 孙菽芬, 2015. 陆面过程模型中垂直非均匀土壤的水分传输
10. 1007/BF00132857. 及相变的模拟[J]. 大气科学, 39 (4): 827−838. DOI: 10. 3878/
Rodell M, Velicogna I, Famiglietti J S, 2009. Satellite-based esti‐ j. issn. 1006-9895. 1411. 14227. Li Q, Sun S F, 2015. The simu‐
mates of groundwater depletion in India[J]. Nature, 460(7258): lation of soil water flow and phase change in vertically inhomoge‐
999-1002. DOI: 10. 1038/nature08238. neous soil in land surface models[J]. Chinese Journal of Atmo‐
Shukla J, Mintz Y, 1982. The influence of land surface evapotranspi‐ spheric Sciences, 39 (4): 827−838. DOI: 10. 3878/j. issn. 1006-
ration on Earth's climate[J]. Science, 215(4539): 1498-1501. 9895. 1411. 14227.
DOI: 10. 1126/science. 215. 4539. 1498. 刘帅, 于贵瑞, 浅沼顺, 等, 2009. 蒙古高原中部草地土壤冻融过程
Xie Z, Wang L, Jia B, et al, 2016. Measuring and modeling the im‐ 及土壤含水量分布[J]. 土壤通报, 46(1): 46-51. Liu S, Yu G
pact of a severe drought on terrestrial ecosystem CO and water R, Qian Z S, et al, 2009. The thawing-freezing processes and
2
fluxes in a subtropical forest[J]. Journal of Geophysical Re‐ soil moisture distribution of the steppe in central Mongolian Pla‐
search: Biogeosciences, 121(10): 2576-2587. DOI: 10. 1002/ teau[J]. Chinese Journal of Soil Science, 46(1): 46-51.
2016JG003437. 陆宣承, 文军, 田辉, 等, 2020. 若尔盖高寒湿地-大气间水热交换
Yang K, Wang C H, 2019. Water storage effect of soil freeze-thaw 湍流通量的日变化特征分析[J]. 高原气象, 39(4): 719-728.
process and its impacts on soil hydro-thermal regime variation DOI: 10. 7522/j. issn. 1000-0534. 2019. 00073. Lu X C, Wen J,
[J]. Agricultural and Forest Meteorology, 265: 280-294. 265: Tian H, et al, 2020. Analysis of the turbulent fluxes of water &
DOI: 10. 1016/j. agrformet. 2018. 11. 011. heat exchange between the Zoige Alpine wetland and atmosphere
Zou J, Xie Z H, Yu Y, et al, 2014. Climatic responses to anthropo‐ [J]. Plateau Meteorology, 39(4): 719-728. DOI: 10. 7522/j.
genic groundwater exploitation: a case study of the Haihe River issn. 1000-0534. 2019. 00073.
Basin, northern China[J]. Climate Dynamics, 42(7/8): 2125- 牛国跃, 洪钟祥, 孙菽芬, 1997. 陆面过程研究的现状与发展趋势
2145. DOI: 10. 1007/s00382-013-1995-2. [J]. 地球科学进展, 12(1): 20-25. Niu G Y, Hong Z X, Sun S
陈海山, 孙照渤, 2002. 陆气相互作用及陆面模式的研究进展[J]. F, 1997. Status and developmental trends of land surface process‐
南京气象学院学报 , 25(2): 277-288. Chen H S, Sun Z B, es study[J]. Advance In Earth Sciences, 12(1): 20-25.
2002. Review of land-atmosphere interaction and land surface 王龙欢, 谢正辉, 贾炳浩, 等, 2021. 陆面过程模式研究进展—以
model studies[J]. Journal of Nanjing Institute of Meteorology, 25 CAS-LSM 为例[J]. 高原气象, 40(6): 1347-1363. DOI: 10.
(2): 277-288. DOI: 10. 13878/j. cnki. dqkxxb. 2002. 02. 021. 7522/j. issn. 1000-0534. 2021. zk016. Wang L H, Xie Z H, Jia B
戴永久, 2020. 陆面过程模式研发中的问题[J]. 大气科学学报, 43 H, et al, 2021. Recent progress in the land surface process stud‐
(1): 33-38. DOI: 10. 13878/j. cnki. dqkxxb. 20200103006. Dai ies: a case study of CAS-LSM[J]. Plateau Meteorology, 40(6):
Y J, 2020. Issues in research and development of land surface 1347-1363. DOI: 10. 7522/j. issn. 1000-0534. 2021. zk016.
process model[J]. Transactions of Atmospheric Sciences, 43 吴统文, 宋连春, 李伟平, 等, 2014. 北京气候中心气候系统模式研
(1): 33-38. DOI: 10. 13878/j. cnki. dqkxxb. 20200103006. 发进展—在气候变化研究中的应用[J]. 气象学报, 72(1): 12-
付春伟, 胡泽勇, 卢珊, 等, 2022. 基于 CLM4. 5模式的季节冻土区 29. DOI: 10. 11676/qxxb2013. 084. Wu T W, Song L C, Li W
土壤参数化方案的模拟研究[J]. 高原气象, 41(1): 93-106. P, et al, 2014. An overview on progress in Beijing Climate Cen‐
DOI: 10. 7522/j. issn. 1000-0534. 2021. 00050. Fu C W, Hu Z ter Climate System Model—Its development and application to
Y, Lu S, et al, 2022. A simulation study on soil parameterization climate change studies[J]. Acta Meteorologica Sinica, 72(1):
scheme of seasonally frozen ground regions based on CLM4. 5 12-29. DOI: 10. 11676/qxxb2013. 084.
[J]. Plateau Meteorology, 41(1): 93- 106. DOI: 10. 7522/j. 苏有琦, 张宇, 宋敏红, 等, 2020. 基于实测土壤属性 CLM4. 5对青
issn. 1000-0534. 2021. 00050. 藏高原高寒草甸模拟性能的评估[J]. 高原气象, 39(6): 1295-
胡伟, 马伟强, 马耀明, 等, 2020. GLDAS 资料驱动的 Noah-MP 陆 1308. DOI: 10. 7522/j. issn. 1000-0534. 2019. 000136. Su Y Q,
面模式青藏高原地表能量交换模拟性能评估[J]. 高原气象, Zhang Y, Song M H, et al, 2020. Evaluation of simulated perfor‐
39 (3): 486-498. DOI: 10. 7522/j. issn. 1000-0534. 2019. mance of CLM4. 5 in alpine meadow over the Qinghai-Xizang
00060. Hu W, Ma W Q, Ma Y M, et al, 2020. Evaluating perfor‐ Plateau based on measured soil properties[J]. Plateau Meteorolo‐