Page 219 - 《高原气象》2025年第3期
P. 219
3 期 黄克秀等:黑河上游高寒山区土壤水分模拟对Noah-MP模型参数化方案的敏感性评估 777
来的研究工作中, 我们将在以上工作的基础上, 进 teau[J]. Geoscientific Model Development, 14(3): 1753-1771.
一步比较不同气候类型条件下土壤水分模拟结果 DOI: 10. 5194/gmd-14-1753-2021.
Niu G Y, Yang Z L, 2006. Effects of frozen soil on snowmelt runoff
对参数化方案的敏感性以及多参数化方案集合模
and soil water storage at a continental scale[J]. Journal of Hydro‐
拟结果的不确定性。 meteorology, 7(5): 937-952. DOI: 10. 1175/JHM538. 1.
参考文献(References): Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah
land surface model with multiparameterization options (Noah-
Cai X, Yang Z L, David C H, et al, 2014. Hydrological evaluation of MP): 1. Model description and evaluation with local-scale mea‐
the Noah-MP land surface model for the Mississippi River Basin surements[J]. Journal of Geophysical Research: Atmospheres,
[J]. Journal of Geophysical Research: Atmospheres, 119(1): 116(D12). DOI: 10. 1029/2010JD015139.
23-38. DOI: 10. 1002/2013JD020792. Parrish M A, Moradkhani H, DeChant C M, 2012. Toward reduction
Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrolo‐ of model uncertainty: Integration of Bayesian model averaging
gy model with the Penn State-NCAR MM5 modeling system. Part and data assimilation[J]. Water Resources Research, 48(3).
I: model implementation and sensitivity[J]. Monthly Weather Re‐ DOI: 10. 1029/2011WR011116.
view, 129(4): 569-585. DOI: 10. 1175/1520-0493(2001)129< Peterson A M, Helgason W H, Ireson A M, 2019. How spatial pat‐
0569: CAALSH>2. 0. CO; 2. terns of soil moisture dynamics can explain field-scale soil mois‐
Dong J, Crow W T, 2019. L-band remote-sensing increases sampled ture variability: observations from a sodic landscape[J]. Water
levels of global soil moisture-air temperature coupling strength Resources Research, 55(5): 4410-4426. DOI: 10. 1029/
[J]. Remote Sensing of Environment, 220: 51-58. DOI: 10. 2018WR023329.
1016/j. rse. 2018. 10. 024. Robock A, Vinnikov K Y, Srinivasan G, et al, 2000. The global soil
Ek M B, Mitchell K E, Lin Y, et al, 2003. Implementation of Noah moisture data bank[J]. Bulletin of the American Meteorological
land surface model advances in the National Centers for Environ‐ Society, 81(6): 1281-1300. DOI: 10. 1175/1520-0477(2000)
mental Prediction operational mesoscale Eta model[J]. Journal of 081<1281: TGSMDB>2. 3. CO; 2.
Geophysical Research: Atmospheres, 108(D22). DOI: 10. 1029/ Srivastava P K, 2017. Satellite soil moisture: review of theory and ap‐
2002JD003296. plications in water resources[J]. Water Resources Management,
Escorihuela M J, Chanzy A, Wigneron J P, et al, 2010. Effective soil 31(10): 3161-3176. DOI: 10. 1007/s11269-017-1722-6.
moisture sampling depth of L-band radiometry: a case study[J]. Van Arkel Z, Kaleita A L, 2014. Identifying sampling locations for
Remote Sensing of Environment, 114(5): 995-1001. DOI: 10. field-scale soil moisture estimation using K-means clustering[J].
1016/j. rse. 2009. 12. 011. Water Resources Research, 50(8): 7050-7057. DOI: 10. 1002/
Gao Y, Li K, Chen F, et al, 2015. Assessing and improving Noah- 2013WR015015.
MP land model simulations for the central Tibetan Plateau[J]. Vereecken H, Huisman J A, Bogena H, et al, 2008. On the value of
Journal of Geophysical Research: Atmospheres, 120(18): 9258- soil moisture measurements in vadose zone hydrology: a review
9278. DOI: 10. 1002/2015JD023404. [J]. Water Resources Research, 44 (4). DOI: 10. 1029/
He C, Valayamkunnath P, Barlage M, et al, 2023. The Community 2008WR006829.
Noah-MP Land Surface Modeling system technical description Yang Q, Dan L, Lv M, et al, 2021. Quantitative assessment of the pa‐
version 5. 0[M]. No. NCAR/TN-575+STR. DOI: 10. 5065/ rameterization sensitivity of the Noah-MP land surface model
ew8g-yr95. with dynamic vegetation using ChinaFLUX data[J]. Agricultural
Koster R D, Walker G K, Mahanama S P P, et al, 2014. Soil mois‐ and Forest Meteorology, 307: 108542. DOI: 10. 1016/j.
ture initialization error and subgrid variability of precipitation in agrformet. 2021. 108542.
seasonal streamflow forecasting[J]. Journal of Hydrometeorolo‐ Yang Z L, Niu G Y, Mitchell K E, et al, 2011. The community Noah
gy, 15(1): 69-88. DOI: 10. 1175/JHM-D-13-050. 1. land surface model with multiparameterization options (Noah-
Li Q, Yang T, Li L, 2022. Quantitative assessment of the parameter‐ MP): 2. Evaluation over global river basins[J]. Journal of Geo‐
ization sensitivity of the WRF/Noah-MP model of snow dynamics physical Research: Atmospheres, 116(D12). https: //onlineli‐
in the Tianshan Mountains, Central Asia[J]. Atmospheric Re‐ brary. wiley. com/doi/abs/10. 1029/2010JD015140. DOI: 10.
search, 277: 106310. DOI: 10. 1016/j. atmosres. 2022. 106310. 1029/2010JD015140.
Li X L, Lü H, Horton R, et al, 2014. Real-time flood forecast using You Y, Huang C, Yang Z, et al, 2020. Assessing Noah-MP parame‐
the coupling support vector machine and data assimilation method terization sensitivity and uncertainty interval across snow climates
[J]. Journal of Hydroinformatics, 16(5): 973-988. DOI: 10. [J]. Journal of Geophysical Research: Atmospheres, 125(4):
2166/hydro. 2013. 075. e2019JD030417. DOI: 10. 1029/2019JD030417.
Li X, Wu T, Wu X, et al, 2021. Assessing the simulated soil hydro‐ Zhang G, Chen F, Gan Y, 2016. Assessing uncertainties in the Noah-
thermal regime of the active layer from the Noah-MP land surface MP ensemble simulations of a cropland site during the Tibet Joint
model (v1. 1) in the permafrost regions of the Qinghai-Tibet Pla‐ International Cooperation program field campaign[J]. Journal of