Page 219 - 《高原气象》2025年第3期
P. 219

3 期           黄克秀等:黑河上游高寒山区土壤水分模拟对Noah-MP模型参数化方案的敏感性评估                                     777
               来的研究工作中, 我们将在以上工作的基础上, 进                             teau[J]. Geoscientific Model Development, 14(3): 1753-1771.
               一步比较不同气候类型条件下土壤水分模拟结果                                DOI: 10. 5194/gmd-14-1753-2021.
                                                                 Niu G Y, Yang Z L, 2006. Effects of frozen soil on snowmelt runoff
               对参数化方案的敏感性以及多参数化方案集合模
                                                                    and soil water storage at a continental scale[J]. Journal of Hydro‐
               拟结果的不确定性。                                            meteorology, 7(5): 937-952. DOI: 10. 1175/JHM538. 1.
               参考文献(References):                                 Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah
                                                                    land  surface  model  with  multiparameterization  options (Noah-
               Cai X, Yang Z L, David C H, et al, 2014. Hydrological evaluation of   MP): 1. Model description and evaluation with local-scale mea‐
                  the Noah-MP land surface model for the Mississippi River Basin  surements[J]. Journal  of  Geophysical  Research:  Atmospheres,
                 [J]. Journal  of  Geophysical  Research: Atmospheres,  119(1):   116(D12). DOI: 10. 1029/2010JD015139.
                  23-38. DOI: 10. 1002/2013JD020792.             Parrish M A, Moradkhani H, DeChant C M, 2012. Toward reduction
               Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrolo‐  of  model  uncertainty:  Integration  of  Bayesian  model  averaging
                  gy model with the Penn State-NCAR MM5 modeling system. Part   and  data  assimilation[J]. Water  Resources  Research,  48(3).
                  I: model implementation and sensitivity[J]. Monthly Weather Re‐  DOI: 10. 1029/2011WR011116.
                  view, 129(4): 569-585. DOI: 10. 1175/1520-0493(2001)129<  Peterson A M, Helgason W H, Ireson A M, 2019. How spatial pat‐
                  0569: CAALSH>2. 0. CO; 2.                         terns of soil moisture dynamics can explain field-scale soil mois‐
               Dong J, Crow W T, 2019. L-band remote-sensing increases sampled   ture  variability:  observations  from  a  sodic  landscape[J]. Water
                  levels  of  global  soil  moisture-air  temperature  coupling  strength  Resources  Research,  55(5):  4410-4426. DOI:  10. 1029/
                 [J]. Remote  Sensing  of  Environment,  220:  51-58. DOI:  10.    2018WR023329.
                  1016/j. rse. 2018. 10. 024.                    Robock A, Vinnikov K Y, Srinivasan G, et al, 2000. The global soil
               Ek M B, Mitchell K E, Lin Y, et al, 2003. Implementation of Noah   moisture data bank[J]. Bulletin of the American Meteorological
                  land surface model advances in the National Centers for Environ‐  Society, 81(6): 1281-1300. DOI: 10. 1175/1520-0477(2000)
                  mental Prediction operational mesoscale Eta model[J]. Journal of   081<1281: TGSMDB>2. 3. CO; 2.
                  Geophysical Research: Atmospheres, 108(D22). DOI: 10. 1029/  Srivastava P K, 2017. Satellite soil moisture: review of theory and ap‐
                  2002JD003296.                                     plications in water resources[J]. Water Resources Management,
               Escorihuela M J, Chanzy A, Wigneron J P, et al, 2010. Effective soil   31(10): 3161-3176. DOI: 10. 1007/s11269-017-1722-6.
                  moisture sampling depth of L-band radiometry: a case study[J].  Van Arkel  Z,  Kaleita A  L,  2014. Identifying  sampling  locations  for
                  Remote Sensing of Environment, 114(5): 995-1001. DOI: 10.    field-scale soil moisture estimation using K-means clustering[J].
                  1016/j. rse. 2009. 12. 011.                       Water Resources Research, 50(8): 7050-7057. DOI: 10. 1002/
               Gao Y, Li K, Chen F, et al, 2015. Assessing and improving Noah-  2013WR015015.
                  MP  land  model  simulations  for  the  central  Tibetan  Plateau[J].  Vereecken H, Huisman J A, Bogena H, et al, 2008. On the value of
                  Journal of Geophysical Research: Atmospheres, 120(18): 9258-  soil moisture measurements in vadose zone hydrology: a review
                  9278. DOI: 10. 1002/2015JD023404.                 [J]. Water  Resources  Research,  44 (4). DOI:  10. 1029/
               He C, Valayamkunnath P, Barlage M, et al, 2023. The Community   2008WR006829.
                  Noah-MP  Land  Surface  Modeling  system  technical  description   Yang Q, Dan L, Lv M, et al, 2021. Quantitative assessment of the pa‐
                  version  5. 0[M]. No. NCAR/TN-575+STR. DOI:  10. 5065/  rameterization  sensitivity  of  the  Noah-MP  land  surface  model
                  ew8g-yr95.                                        with dynamic vegetation using ChinaFLUX data[J]. Agricultural
               Koster R D, Walker G K, Mahanama S P P, et al, 2014. Soil mois‐  and  Forest  Meteorology,  307:  108542. DOI:  10. 1016/j.
                  ture initialization error and subgrid variability of precipitation in   agrformet. 2021. 108542.
                  seasonal  streamflow  forecasting[J]. Journal  of  Hydrometeorolo‐  Yang Z L, Niu G Y, Mitchell K E, et al, 2011. The community Noah
                  gy, 15(1): 69-88. DOI: 10. 1175/JHM-D-13-050. 1.  land  surface  model  with  multiparameterization  options (Noah-
               Li Q, Yang T, Li L, 2022. Quantitative assessment of the parameter‐  MP): 2. Evaluation over global river basins[J]. Journal of Geo‐
                  ization sensitivity of the WRF/Noah-MP model of snow dynamics   physical  Research:  Atmospheres,  116(D12). https: //onlineli‐
                  in  the  Tianshan  Mountains,  Central  Asia[J]. Atmospheric  Re‐  brary. wiley. com/doi/abs/10. 1029/2010JD015140. DOI:  10.
                  search, 277: 106310. DOI: 10. 1016/j. atmosres. 2022. 106310.  1029/2010JD015140.
               Li X L, Lü H, Horton R, et al, 2014. Real-time flood forecast using   You Y, Huang C, Yang Z, et al, 2020. Assessing Noah-MP parame‐
                  the coupling support vector machine and data assimilation method  terization sensitivity and uncertainty interval across snow climates
                 [J]. Journal  of  Hydroinformatics,  16(5):  973-988. DOI:  10.    [J]. Journal  of  Geophysical  Research: Atmospheres,  125(4):
                  2166/hydro. 2013. 075.                            e2019JD030417. DOI: 10. 1029/2019JD030417.
               Li X, Wu T, Wu X, et al, 2021. Assessing the simulated soil hydro‐  Zhang G, Chen F, Gan Y, 2016. Assessing uncertainties in the Noah-
                  thermal regime of the active layer from the Noah-MP land surface   MP ensemble simulations of a cropland site during the Tibet Joint
                  model (v1. 1) in the permafrost regions of the Qinghai-Tibet Pla‐  International Cooperation program field campaign[J]. Journal of
   214   215   216   217   218   219   220   221   222   223   224