Page 159 - 《高原气象》2025年第3期
P. 159
3 期 丁 一等:川南森林冠层上方动量和标量的湍流输送效率 717
献都大于喷射。对于三种标量通量, 在不稳定和稳 ter of scalar meteorological quantities[J]. Boundary-Layer Meteo‐
定条件下, 所有三层高度处, 喷射占主导作用, 在 rology, 63: 231-257. DOI: 10. 1007/BF00710461.
Dupont S, Patton E G, 2012. Momentum and scalar transport within a
中性条件下, 在粗糙副层处, 扫掠和喷射的作用同
vegetation canopy following atmospheric stability and seasonal
样重要, 在粗糙副层和常通量层的边界及常通量层
canopy changes: the CHATS experiment[J]. Atmospheric Chem‐
处, 扫掠的作用大于喷射。 istry and Physics, 12(13): 5913-5935. DOI: 10. 5194/acp-12-
(2) 三阶累积量展开法(CEM)和截断累积量 5913-2012.
展开法(ICEM)都比较合理地再现了喷射和扫掠通 Finnigan J J, 1979. Turbulence in Waving Wheat[J]. Boundary-Layer
量贡献之间的差异。与 CEM 相比, ICEM 对 38 m Meteorology, 16: 213-236. DOI: 10. 1007/BF03335367.
处的温度模拟较差。总体来说, CEM 和 ICEM 产生 Finnigan J, 2000. Turbulence in plant canopies[J]. Annual Review of
Fluid Mechanics, 32: 519-571. DOI: 10. 1146/annurev. fluid.
的结果相似, 在森林冠层上模拟喷射和扫掠通量贡
32. 1. 519.
献之间的差异, 忽略偏度项的贡献是合理的。
Foken T, Gockede M, Mauder M, et al, 2004. Post-field data quality
(3) 动量的湍流传输效率随不稳定性的增加 control[M]//Lee X, Massman W, and Law B, eds. Handbook of
而降低, 但热量传输效率是增加的。在粗糙副层, micrometeorology: a guide for surface flux measurement and
水汽传输效率随不稳定性增加略有增加, 但不受粗 analysis. Kluwer Academic Publishers, 181-208. DOI: 10. 1007/
糙副层和常通量层的边界以及常通量层处大气不 1-4020-2265-4_9.
Francone C, Katul G, Cassardo C, et al, 2012. Turbulent transport ef‐
稳定性的影响, CO 传输效率在三层高度上随不稳
2
ficiency and the ejection-sweep motion for momentum and heat
定性增加而增加。在稳定条件下, 水汽和 CO 传输
2
效率略有降低。 on sloping terrain covered with vineyards[J]. Agricultural and
Forest Meteorology, 162: 98-107. DOI: 10. 1016/j. agrformet.
(4) 计算热量传输效率与水汽和二氧化碳传 2012. 04. 012.
输效率的比率进一步研究三个标量之间的差异。 Gao W, Shaw R H, Paw U K T, 1989. Observation of organized
在强不稳定条件下, 热量传输效率比其他标量传输 structures in turbulent flow within and above a forest canopy[J].
更有效。当大气趋于中性时, 热量传输效率与水汽 Boundary-Layer Meteorology, 47: 349-377. DOI: 10. 1007/
BF00122339.
和二氧化碳传输之比降低。在稳定条件下, 在粗糙
Garratt J, 1978. Flux profile relations above tall vegetation[J]. Quar‐
副层和常通量层的边界以及常通量层处, 水汽的传
terly Journal of the Royal Meteorological Society, 104: 199-
输效率比二氧化碳更有效, 但在粗糙副层则相反, 211. DOI: 10. 1002/qj. 49710443915.
这与在粗糙副层中 CO 有更大的扫掠时间分数 Hong J K, Kim J, Miyata A, et al, 2002. Basic characteristics of can‐
2
一致。 opy turbulence in a homogeneous rice paddy[J]. Journal of Geo‐
physical Research, 107: 4623. DOI: 10. 1029/2002JD002223.
参考文献(References): Horiguchi M, Hayashi T, Hashiguchi H, et al, 2010. Observations of
Coherent Turbulence Structures in the Near-Neutral Atmospheric
Bergstrom H, Hogstrom U, 1989. Turbulent exchange above a pine
Boundary Layer[J]. Boundary-Layer Meteorology, 136: 25-44.
forest, II, organized structures[J]. Boundary-Layer Meteorolo‐
DOI: 10. 1007/s10546-010-9500-5.
gy, 49: 231-263. DOI: 10. 1007/BF00120972.
Kadivar M, Tormey D, McGranaghan G, 2021. A review on turbulent
Chen F Z, 1990. Turbulent characteristics over a rough natural surface
flow over rough surfaces: Fundamentals and theories[J]. Interna‐
part I: turbulent structures[J]. Boundary-Layer Meteorology,
tional Journal of Thermofluids, 10: 10007. DOI: 10. 1016/j.
52: 151-175. DOI: 10. 1007/BF00123182.
ijft. 2021. 100077.
Choi T J, Hong J K, Kim J, et al, 2004. Turbulent exchange of heat,
Katul G, Cheng-I Hsieh, Greg Kuhn, et al, 1997a. Turbulent eddy
water vapor, and momentum over a Tibetan prairie by eddy cova‐
motion at the forest-atmosphere interface[J]. Journal of Geophys‐
riance and flux variance measurements[J]. Journal of Geophysi‐
cal Research-Atmospheres, 109(D21): 12. DOI: 10. 1029/ ical Research-atmospheres, 102(D12): 13409-13421. DOI: 10.
2004JD004767. 1029/97JD00777.
Coppin P A, Raupach M R, Legg B J, 1986. Experiments on scalar Katul G, Goltz S M, Hsieh C I, et al, 1995. Estimation of surface
dispersion within a model plant canopy, II, an elevated plane heat and momentum fluxes using the flux-variance method above
source[J]. Boundary-Layer Meteorology, 35: 167-191. DOI: uniform and non-uniform terrain[J]. Boundary-Layer Meteorolo‐
10. 1007/BF00117300. gy, 74: 237-260. DOI: 10. 1007/BF00712120.
De Bruin H A R, Kohsiek W, Hurk B, 1993. A verification of some Katul G, Hsieh C I, 1999. A note on the flux-variance similarity rela‐
methods to determine the fluxes of momentum, sensible heat, tionships for heat and water vapour in the unstable atmospheric
and water vapour using standard deviation and structure parame‐ surface layer[J]. Boundary-Layer Meteorology, 90: 327-338.