Page 159 - 《高原气象》2025年第3期
P. 159

3 期                      丁  一等:川南森林冠层上方动量和标量的湍流输送效率                                        717
               献都大于喷射。对于三种标量通量, 在不稳定和稳                              ter of scalar meteorological quantities[J]. Boundary-Layer Meteo‐
               定条件下, 所有三层高度处, 喷射占主导作用, 在                            rology, 63: 231-257. DOI: 10. 1007/BF00710461.
                                                                 Dupont S, Patton E G, 2012. Momentum and scalar transport within a
               中性条件下, 在粗糙副层处, 扫掠和喷射的作用同
                                                                    vegetation  canopy  following  atmospheric  stability  and  seasonal
               样重要, 在粗糙副层和常通量层的边界及常通量层
                                                                    canopy changes: the CHATS experiment[J]. Atmospheric Chem‐
               处, 扫掠的作用大于喷射。                                        istry and Physics, 12(13): 5913-5935. DOI: 10. 5194/acp-12-
                  (2)  三阶累积量展开法(CEM)和截断累积量                          5913-2012.
               展开法(ICEM)都比较合理地再现了喷射和扫掠通                          Finnigan J J, 1979. Turbulence in Waving Wheat[J]. Boundary-Layer
               量贡献之间的差异。与 CEM 相比, ICEM 对 38 m                       Meteorology, 16: 213-236. DOI: 10. 1007/BF03335367.
               处的温度模拟较差。总体来说, CEM 和 ICEM 产生                      Finnigan J, 2000. Turbulence in plant canopies[J]. Annual Review of
                                                                    Fluid  Mechanics,  32:  519-571. DOI:  10. 1146/annurev. fluid.
               的结果相似, 在森林冠层上模拟喷射和扫掠通量贡
                                                                    32. 1. 519.
               献之间的差异, 忽略偏度项的贡献是合理的。
                                                                 Foken T, Gockede M, Mauder M, et al, 2004. Post-field data quality
                  (3)  动量的湍流传输效率随不稳定性的增加                            control[M]//Lee X, Massman W, and Law B, eds. Handbook of
               而降低, 但热量传输效率是增加的。在粗糙副层,                              micrometeorology:  a  guide  for  surface  flux  measurement  and
               水汽传输效率随不稳定性增加略有增加, 但不受粗                              analysis. Kluwer Academic Publishers, 181-208. DOI: 10. 1007/
               糙副层和常通量层的边界以及常通量层处大气不                                1-4020-2265-4_9.
                                                                 Francone C, Katul G, Cassardo C, et al, 2012. Turbulent transport ef‐
               稳定性的影响, CO 传输效率在三层高度上随不稳
                                2
                                                                    ficiency  and  the  ejection-sweep  motion  for  momentum  and  heat
               定性增加而增加。在稳定条件下, 水汽和 CO 传输
                                                        2
               效率略有降低。                                              on  sloping  terrain  covered  with  vineyards[J]. Agricultural  and
                                                                    Forest Meteorology, 162: 98-107. DOI: 10. 1016/j. agrformet.
                  (4)  计算热量传输效率与水汽和二氧化碳传                            2012. 04. 012.
               输效率的比率进一步研究三个标量之间的差异。                             Gao  W,  Shaw  R  H,  Paw  U  K  T,  1989. Observation  of  organized
               在强不稳定条件下, 热量传输效率比其他标量传输                              structures in turbulent flow within and above a forest canopy[J].
               更有效。当大气趋于中性时, 热量传输效率与水汽                              Boundary-Layer  Meteorology,  47:  349-377. DOI:  10. 1007/
                                                                    BF00122339.
               和二氧化碳传输之比降低。在稳定条件下, 在粗糙
                                                                 Garratt J, 1978. Flux profile relations above tall vegetation[J]. Quar‐
               副层和常通量层的边界以及常通量层处, 水汽的传
                                                                    terly  Journal  of  the  Royal  Meteorological  Society,  104:  199-
               输效率比二氧化碳更有效, 但在粗糙副层则相反,                              211. DOI: 10. 1002/qj. 49710443915.
               这与在粗糙副层中 CO 有更大的扫掠时间分数                            Hong J K, Kim J, Miyata A, et al, 2002. Basic characteristics of can‐
                                     2
               一致。                                                  opy turbulence in a homogeneous rice paddy[J]. Journal of Geo‐
                                                                    physical Research, 107: 4623. DOI: 10. 1029/2002JD002223.
               参考文献(References):                                 Horiguchi M, Hayashi T, Hashiguchi H, et al, 2010. Observations of
                                                                    Coherent Turbulence Structures in the Near-Neutral Atmospheric
               Bergstrom  H,  Hogstrom  U,  1989. Turbulent  exchange  above  a  pine
                                                                    Boundary Layer[J]. Boundary-Layer Meteorology, 136: 25-44.
                  forest,  II,  organized  structures[J]. Boundary-Layer  Meteorolo‐
                                                                    DOI: 10. 1007/s10546-010-9500-5.
                  gy, 49: 231-263. DOI: 10. 1007/BF00120972.
                                                                 Kadivar M, Tormey D, McGranaghan G, 2021. A review on turbulent
               Chen F Z, 1990. Turbulent characteristics over a rough natural surface
                                                                    flow over rough surfaces: Fundamentals and theories[J]. Interna‐
                  part  I:  turbulent  structures[J]. Boundary-Layer  Meteorology,
                                                                    tional  Journal  of  Thermofluids,  10:  10007. DOI:  10. 1016/j.
                  52: 151-175. DOI: 10. 1007/BF00123182.
                                                                    ijft. 2021. 100077.
               Choi T J, Hong J K, Kim J, et al, 2004. Turbulent exchange of heat,
                                                                 Katul  G,  Cheng-I  Hsieh,  Greg  Kuhn,  et  al,  1997a. Turbulent  eddy
                  water vapor, and momentum over a Tibetan prairie by eddy cova‐
                                                                    motion at the forest-atmosphere interface[J]. Journal of Geophys‐
                  riance and flux variance measurements[J]. Journal of Geophysi‐
                  cal  Research-Atmospheres,  109(D21):  12. DOI:  10. 1029/  ical Research-atmospheres, 102(D12): 13409-13421. DOI: 10.
                  2004JD004767.                                     1029/97JD00777.
               Coppin P A, Raupach M R, Legg B J, 1986. Experiments on scalar   Katul  G,  Goltz  S  M,  Hsieh  C  I,  et  al,  1995. Estimation  of  surface
                  dispersion  within  a  model  plant  canopy,  II,  an  elevated  plane   heat and momentum fluxes using the flux-variance method above
                  source[J]. Boundary-Layer  Meteorology,  35:  167-191. DOI:   uniform and non-uniform terrain[J]. Boundary-Layer Meteorolo‐
                  10. 1007/BF00117300.                              gy, 74: 237-260. DOI: 10. 1007/BF00712120.
               De Bruin H A R, Kohsiek W, Hurk B, 1993. A verification of some   Katul G, Hsieh C I, 1999. A note on the flux-variance similarity rela‐
                  methods  to  determine  the  fluxes  of  momentum,  sensible  heat,   tionships  for  heat  and  water  vapour  in  the  unstable  atmospheric
                  and water vapour using standard deviation and structure parame‐  surface  layer[J]. Boundary-Layer  Meteorology,  90:  327-338.
   154   155   156   157   158   159   160   161   162   163   164