Page 147 - 《高原气象》2022年第6期
P. 147

高     原      气     象                                 41 卷
              1510
                 与湍流特征[J]. 热带气象学报,33(5):706-715.                王欢,韦志刚,朱献,等,2020. 岭南地区典型次生常绿阔叶林下垫
             刘辉志,涂钢,董文杰,等,2006. 半干旱地区地气界面水汽和二氧                     面太阳和长波辐射特征分析[J]. 高原气象,39(5):1033-
                 化碳通量的日变化及季节变化[J]. 大气科学,30(1):108-118.             1044. DOI:10. 7522/j. issn. 1000-0534. 2019. 00090.
             鹿世瑾,1990. 华南气候[M]. 北京:气象出版社,67~80.                 王介民,1999. 陆面过程实验和地气相互作用研究——从 HEIFE 到
             梅梅,姜允迪,王遵娅,等,2017. 2016年中国气候主要特征及主要                   IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象,18(3):280-294.
                 天气气候事件[J]. 气象,43(4):468-476.                   王维真,徐自为,刘绍民,等,2009. 黑河流域不同下垫面水热通量
             慕文玲,霍文,何清,等,2017. 塔中人工绿地与自然沙面感热通量和                    特征分析[J]. 地球科学进展,24(7):714-723.
                 潜热通量差异性研究[J]. 干旱区资源与环境,31(1):115-120.          王宇轩,奥银焕,李照国,等,2021. 黑河中下游不同类型下垫面的
             任雪塬,张强,岳平,等,2021. 中国北方四类典型下垫面能量分配                     能量收支差异及其成因研究[J]. 高原气象,40(3):495-509.
                 特征及其环境影响因子研究[J]. 高原气象,40(1):109-122.              DOI:10. 7522/j. issn. 1000-0534. 2020. 00100.
                 DOI:10. 7522/j. issn. 1000-0534. 2020. 00008.  韦志刚,胡嘉骢,董文杰,等,2016. 珠海凤凰山陆气相互作用与碳
             沈永平,王国亚,2013. IPCC第一工作组第五次评估报告对全球气候                   通量观测塔的基本观测及晴天主要观测量的日变化特征[J].
                 变化认知的最新科学要点[J]. 冰川冻土,35(5):1068-1076.             大气科学,40(2):423-436.
             孙菽芬,2002. 陆面过程研究的进展[J]. 新疆气象,25(6):1-6.            张翔,刘晓琴,张立锋,等,2017. 青藏高原三江源区人工草地能量
             陶诗言,1980. 中国之暴雨[M]. 北京:科学出版社,1-15.                    平衡的变化特征[J]. 生态学报,37(15):4973-4983.
             同小娟,张劲松,孟平,2018. 基于涡度相关法的森林生态系统碳                   左洪超,胡隐樵,1994. 黑河地区绿洲和戈壁小气候特征的季节变
                 交换及其控制机制[J]. 温带林业研究,1(2):1-9+14.                  化及其对比分析[J]. 高原气象,13(3):23-33.



                   A Comparative Study on the Surface Flux Characteristics of Two Types
                       of Typical Forest Underlying Surfaces in South of the Five Ridges


                           LIU Yujia ,WEI Zhigang ,WANG Huan ,LI Xianru ,GUO Shitong ,MA Li     1
                                                                          1
                                                                1
                                                 1,2
                                   1
                                                                                        1
                         (1. State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,
                                            Beijing Normal University,Beijing 100875,China;
                    2. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,Guangdong,China)
             Abstract:By using the observation data of the land-atmosphere interaction flux observation tower of a typical
             secondary evergreen broad-leaved forest in Phoenix Mountain of Zhuhai from October 2015 to July 2016 and the
             land surface process observation tower of the hilly shrub forest in Zengcheng area of Guangzhou from October
             2014 to July 2015,we analyzed the energy flux,Bowen ratio,and carbon flux of the two types of forest underly‐
             ing surfaces. The results show that the sensible heat at Zengcheng Station dominates in the dry season,and the
             sensible heat at Zhuhai Station is equivalent to the latent heat. As precipitation increases in the wet season,the la‐
             tent heat at the two stations dominates;the average diurnal fluctuations in sensible heat and latent heat at
             Zengcheng Station in the dry season are slightly more gentle than those at Zhuhai Station;Both stations had nega‐
             tive heat during the night in the dry and wet seasons,and inverse humidity occurred at individual moments. The
             Bowen ratio in the dry and wet seasons fluctuates greatly at night,and the Bowen ratio in the daytime is posi‐
             tive,and the fluctuation is small;the Bowen ratio at Zhuhai Station during the dry season is smaller than that at
             Zengcheng Station;In the wet season,the daytime Bowen ratio is less than 1. The carbon flux variation range of
             secondary evergreen broad-leaved forest is larger than that of hilly shrubs;the carbon sequestration capacity of
             typical secondary evergreen broad-leaved forests is stronger than that of hilly shrubs. The carbon flux at
             Zengcheng Station in the dry season is smaller than that in the wet season;the carbon flux in Zhuhai’s wet sea‐
             son is slightly smaller than that in the dry season,which may be related to the weather conditions at Zhuhai Sta‐
             tion and the direction of the flux contribution area.
             Key words:Land-atmosphere interaction;sensible heat;latent heat;carbon flux
   142   143   144   145   146   147   148   149   150   151   152