Page 69 - 《高原气象》2022年第1期
P. 69

1 期                 刘   煜等:基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征                                        67
               王作亮,文军,李振朝,等,2019. 典型干旱指数在黄河源区的适宜                 曾钰婷,张宇,周可,等,2020. 青藏高原那曲地区夏季水汽来源及
                  性评估[J]. 农业工程学报,35(21):186-195. DOI:10. 11975/     输送特征分析[J]. 高原气象,39(3):467-476. DOI:10. 7522/
                  j. issn. 1002-6819. 2019. 21. 022.                j. issn. 1000-0534. 2019. 00120.
               温庆志,孙鹏,张强,等,2020. 非平稳标准化降水蒸散指数构建及                 周丹,张勃,罗静,等,2014. 基于 SPEI 的华北地区近 50 年干旱发
                  中国未来干旱时空格局[J]. 地理学报,75(7):1465-1482.              生强度的特征及成因分析[J]. 自然灾害学报,23(4):192-
                  DOI:10. 11821/dlxb202007010.                      202. DOI:10. 13577/j. jnd. 2014. 0425.
               徐祥德,陶诗言,王继志,等,2002. 青藏高原-季风水汽输送“大三                朱丽,刘蓉,王欣,等,2019. 基于FLEXPART模式对黄河源区盛夏
                  角扇型”影响域特征与中国区域旱涝异常的关系[J]. 气象学                     降水异常的水汽源地及输送特征研究[J]. 高原气象,38(3):
                  报,60(3):257-266. DOI:10. 11676/qxxb2002. 032.     484-496. DOI:10. 7522/j. issn. 1000-0534. 2019. 00015.
               赵娜娜,王贺年,张贝贝,等,2019. 若尔盖湿地流域径流变化及其                 朱圣男,刘卫林,万一帆,等,2020. 抚河流域干旱时空分布特征及
                  对 气 候 变 化 的 响 应[J]. 水 资 源 保 护 ,35(5):40-47. DOI:  其与 ENSO 的相关性[J]. 水土保持研究,27(6):131-138.
                  10. 3880/j. issn. 1004-6933. 2019. 05. 008.       DOI:10. 13869/j. cnki. rswc. 2020. 06. 019.



                      The Characteristics of Water Vapor Transport Based on Lagrangian
                                   Method in the Zoige,Qinghai-Xizang Plateau


                                                         1
                                                                     1
                                       LIU Yu ,LIU Rong ,WANG Xin ,WANG Zuoliang      1
                                             1,2
                         (1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of
                              Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;
                                        2. University of Chinese academy of sciences,Beijing 100049,China)
               Abstract:The drought index has always been a practical standard for assessing a specific region's dry and wet
               state. In order to better understand the spatial distribution pattern of water vapor transport in the Zoige region of
               the Qinghai-Xizang Plateau under extreme dry and wet conditions,this paper calculates the monthly standard‐
               ized precipitation evapotranspiration index based on the ground observation data. It extracts the extreme drought
               and wet conditions in the Zoige region of the Qinghai-Xizang Plateau from 2000 to 2017. The Lagrangian back‐
               ward trajectory model is used to simulate the water vapor transport path under extreme dry and wet conditions
               and evaluate the location of potential evapotranspiration water vapor sources and their contributions to the water
               vapor transport in the study area. The results show that the main water vapor transport path is concentrated in the
               south branch transport path affected by the southwest monsoon during the wet period. The route originates from
               the Arabian Sea and the Bay of Bengal and finally arrives at the Zoige from the western and southern flank of the
               Qinghai-Xizang Plateau. Moreover,the water vapor transport pathway during the drought period is mainly affect‐
               ed by the westerlies. The dominant path starts from North America and the North Atlantic,spreads from west to
               east,the mid-latitude Eurasian continent,and finally reaches the north of the Qinghai-Xizang Plateau. The main
               water vapor sources appeared in the Qinghai-Xizang Plateau,Sichuan Basin,Bay of Bengal,Arabian Sea,and
               other regions. Affected by the water vapor transmission path in different periods,these water vapor sources show
               different characteristics. In the wet period,the water vapor source is mainly distributed around the south of the
               Qinghai-Xizang Plateau(the contribution rate is 35. 98%). In contrast,the primary water vapor source during
               the drought period appears in the northern Qinghai-Xizang Plateau(the contribution rate is 28. 35%). In addi‐
               tion,the contribution rate of water vapor sources from the Arabian Sea and the Bay of Bengal is higher in the wet
               period. In contrast,the contribution rate of water vapor in the local Zoige area and Sichuan is higher in the
               drought period. The analysis results will help to understand the formation mechanism of water vapor during ex‐
               treme drought and wet states,how the water vapor sources work,and the contribution rate of the water vapor
               sources. This research can deepen the understanding of the mechanism of drought and flood disasters.
               Key words:Standardized Precipitation Evapotranspiration Index;water vapor transport;wet and drought evolu‐
               tion;Lagrangian backward trajectory model;drought event
   64   65   66   67   68   69   70   71   72   73   74