Page 133 - 《高原气象》2022年第1期
P. 133
1 期 陆宣承等:若尔盖高寒湿地夏季近地面水平热平流对地表能量闭合度的影响研究 131
Acta Meteorologica Sinica,26(2):250-259. DOI:10. 1007/ 61(15):537-547.
s13351-012-0210-4. 李雪洮,梁捷宁,郭琪,等,2020. 利用大涡模式模拟黄土高原地区
Yang R,Friedl M A,2003. Modeling the effects of three-dimensional 对流边界层特征[J]. 高原气象,39(3):523-531. DOI:10.
vegetation structure on surface radiation and energy balance in bo‐ 7522/j. issn. 1000-0534. 2019. 0050.
real forests[J]. Journal of Geophysical Research,108(D16):1- 陆宣承,文军,田辉,等,2020. 若尔盖高寒湿地-大气间水热交换
11. DOI:10. 1029/2002jd003109. 湍流通量的日变化特征分析[J]. 高原气象,39(4):719-728.
曹生奎,曹广超,陈克龙,等,2016. 青海湖高寒湿地生态系统 CO 2 DOI:10. 7522/j. issn. 1000-0534. 2019. 00073.
通量和水汽通量间的耦合关系[J]. 中国沙漠,36(5):1286- 宋春林,孙向阳,王根绪,2015. 森林生态系统碳水关系及其影响
1294. DOI:10. 7552/j. issn. 1000-694X. 2016. 00029. 因子研究进展[J]. 应用生态学报,26(9):2891-2902. DOI:
郭斌,王珊,张菡,等,2018. 若尔盖湿地天然牧草生育期变化特征 10. 13287/j. 1001-9332. 20150630. 020.
及其对气候变化的响应[J]. 高原山地气象研究,38(2):49- 王介民,王维真,刘绍民,等,2009. 近地层能量平衡闭合问题——
57. DOI:10. 3969/j. issn. 1674-2184. 2018. 02. 008. 综述及个例分析[J]. 地球科学进展,24(7):705-713.
胡隐樵,高由禧,王介民,等,1994. 黑河实验(HEIFE)的一些研究 张强,胡隐樵,1995. 热平流影响下湿润地表的通量-廓线关系[J].
成果[J]. 高原气象,13(3):2-13. 大气科学,19(1):8-20.
李宏宇,张强,赵建华,等,2010. 陇中黄土高原地表能量不平衡特 张强,李宏宇,赵建华,2012. 垂直平流输送和土壤热储存补偿对
征及其影响机制研究[J]. 高原气象,29(5):1153-1162. 黄土高原地表能量平衡的修正[J]. 中国科学(地球科学),42
李宏宇,张强,赵建华,2012a. 论地表能量不平衡的原因及其解决 (1):42-51. DOI:10. 1007/s11430-011-4220-3.
办法[J]. 干旱区研究,29(2):222-232. 周彦昭,李新,2018. 涡动相关能量闭合问题的研究进展[J]. 地球
李宏宇,张强,王春玲,等,2012b. 空气热储存、光合作用和土壤 科 学 进 展 ,33(9):898-913. DOI:10. 11867. /j. issn. 1001-
垂直水分运动对黄土高原地表能量平衡的影响[J]. 物理学报, 8166. 2018. 09. 0898.
Research on the Influence of Horizontal Thermal Advection on
Surface Energy Balance in Zoige Alpine Wetland
1
LU Xuancheng ,WEN Jun ,YANG Yue ,TIAN Hui ,LIU Wenhui ,WU Yueyue ,JIANG Yuqin 1
1
1
1
1
2
(1. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau
Atmosphere and Environment,Chengdu 610225,Sichuan,China;
2. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences / Key Laboratory of Land Surface
Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences,Lanzhou 730000,Gansu,China)
Abstract:The near-surface energy budget closure has always been a scientific hot topic in the land-surface pro‐
cesses research,especially over the underlying surface of heterogeneous wetlands. In this investigation,the hori‐
zontal thermal advection caused by thermal inhomogeneity of the underlying surface over the wetland is calculat‐
ed based on the data of the Flower-lake observation field in the Zoige alpine wetland. With considering the hori‐
zontal thermal advection,its contribution to the near-surface energy closure is analyzed. The results show that
the mean horizontal thermal advection of the Zoige wetland is 22. 9 W·m ,and the maximum value can reach
-2
-2
58. 7 W·m in the daytime of summer 2017. After introducing the horizontal thermal advection and soil heat stor‐
age into the near-surface energy balance equation,the near-surface energy closure ratio increased from 41. 8% to
67. 9% in summer. The contribution of horizontal thermal advection was 5. 8%,that of soil thermal storage was
20. 1%,and that of plant photosynthetic thermal storage was 1. 0%. The diurnal variation of the near-surface hor‐
izontal thermal advective is equivalent to the sensible heat flux in Zoige wetland,and the maximum diurnal varia‐
tion is about one third of the thermal storage of the wetland soil.
Key words:Alpine wetland;eddy correlation;horizontal thermal advection;energy imbalance;non-uniform
underlying surface