Page 185 - 《高原气象》2021年第5期
P. 185
高 原 气 象 40 卷
1146
叶笃正,黄荣辉,1996. 长江黄河流域旱涝规律和成因研究[M]. 济 张强,邹旭恺,肖风劲,2006. GB/T 20481-2006,气象干旱等级
南:山东科学技术出版社. [M]. 北京:中国标准出版社.
尹晗,李耀辉,2013. 我国西南干旱研究最新进展综述[J]. 干旱气 赵海燕,高歌,张培群,等,2011. 综合气象干旱指数修正及在西南
象,31(1):182-193. DOI:10. 11755/j. issn. 1006-7639(2013)- 地区的适用性[J]. 应用气象学报,22(6):698-705.
01-0182. 赵一磊,任福民,李栋梁,等,2013. 基于有效降水干旱指数的改进
袁文平,周广胜,2004. 标准化降水指标与 Z 指数在我国应用的对 研究[J]. 气象,39(5):600-607. DOI:10. 7519/j. issn. 1000-
比分析[J]. 植物生态学报,28(4):523-529. 0526. 2013. 05. 008.
张存杰,刘海波,宋艳玲,等,2017. GB/T 20481-2017,气象干旱 郑建萌,黄玮,陈艳,等,2017. 云南极端气象干旱指标的研究[J].
等级[M]. 北京:中国标准出版社. 高原气象,36(4):1039-1051. DOI:10. 7522/j. issn. 1000-0534.
张俊,陈桂亚,杨文发,2011. 国内外干旱研究进展综述[J]. 人民长江, 2016. 00067.
42(10):65-69. 中国气象局,2007. 中国灾害性天气气候图集[M]. 北京:气象出版社.
张立杰,李健,2018. 基于 SPEI 和 SPI 指数的西江流域干旱多时间 中华人民共和国气候图集编委会,2002. 中华人民共和国气候图集
尺度变化特征[J]. 高原气象,37(2):560-567. DOI:10. 7522/ [M]. 北京:气象出版社.
j. issn. 1000-0534. 2018. 00013. 邹旭恺,任国玉,张强,2010. 基于综合气象干旱指数的中国干旱
张强,潘学标,马柱国,等,2009. 干旱[M]. 北京:气象出版社. 变化趋势研究[J]. 气候与环境研究,15(4):371-378.
张强,张良,崔显成,等,2011. 干旱监测与评价技术的发展及其科 邹旭恺,张强,2008. 近半个世纪我国干旱变化的初步研究[J]. 应
学挑战[J]. 地球科学进展,26(7):763-778. 用气象学报,19(6):679-687.
Analysis of the Applicability of Drought Indexes in the Northeast,
Southwest and Middle-lower Reaches of Yangtze River of China
1
2
2
XIE Wusan ,ZHANG Qiang ,LI Wei ,WU Biwen 1
(1. Anhui Climate Center,Hefei 230031,Anhui,China;
2. National Climate Centre,Beijing 100081,China)
Abstract:Based on the data of temperature,precipitation,soil moisture and historical drought disasters,this pa‐
per analyses the applicability of SPI,SPEI,MI and MCI in the northeast,southwest and middle-lower reaches
of Yangtze River of China from the aspects of spatial and temporal distribution characteristics of drought,diagno‐
sis of typical drought processes,unreasonable jump times analysis and correlation with soil moisture and drought
disasters,etc. The results show that the four indexes are basically the same in diagnosing the interannual varia‐
tion of drought days,while as to diagnosis of the spatial distribution of drought days,the MCI and MI indexes
are more consistent with the actual situation. As far as the daily diagnosis of typical drought processes is con‐
cerned,MCI has the best effect on the description of drought process,and the unreasonable jump times are
82. 6%,73. 8% and 97. 8% lower than that of SPI,SPEI and MI respectively. There are the least unreasonable
jump times of each index in the middle-lower reaches of Yangtze River,followed by that in the southwest China
and the northeast China. Compared to SPI,SPEI and MI,MCI is the best in the correlation with soil moisture,
which has passed the confident level of 99%,and increases by 9. 2%,54. 7% and 68. 8% respectively. The corre‐
lation between the soil moisture and representative stations in southwest China is the best,followed by that in the
middle-lower reaches of Yangtze River,and that in the northeast China is relatively poor. In terms of correlation
with drought-affected area,MCI is also the best,which is 16. 9%,37. 1% and 27. 6% higher than SPI,SPEI
and MI respectively. The correlation between the indexes and the drought-affected area in northeast China is bet‐
ter than that in the middle-lower reaches of Yangtze River,while that in southwest China is worse. On the
whole,the applicability of MCI is the best,which is closely related to the construction methods of drought index‐
es,drought influence factors,time scales,weight of precipitation in different periods and so on.
Key words:Drought index;applicability;northeast China;southwest China;middle-lower reaches of Yangtze
River