Page 74 - 《爆炸与冲击》2026年第01期
P. 74

第 46 卷                王天召,等: 水下接触爆炸气泡脉动特性的理论研究                                  第 1 期

               自由场气泡在最大半径、初始条件以及脉动周期间的定量关系。理论推导表明,接触爆炸气泡最大半
               径、初始半径、脉动周期分别为自由场工况的                     2 1/3  倍(理论比例系数    1.26),实际工况中因流体可压缩性、
               气泡不稳定变形等因素导致的能量损失,上述比例系数略大于实际值。
                   (2) 采用  LS-DYNA  对自由场与接触爆炸工况进行有限元模拟,结果表明接触爆炸气泡的最大半径
               与脉动周期均显著大于自由场,模拟值与理论预测的误差在                            5%  以内。实验研究中,接触爆炸气泡的最
               大半径(10.60 cm)和周期(16.97 ms)较自由场(9.59 cm,15.97 ms)分别增加约               10%  和  6%,与理论误差趋
               势一致,验证了模型的适用性。
                   本文的模型建立在流体无黏且不可压缩假设基础上,忽略了气泡脉动过程中的能量损失,通过实验
               与数值模拟结果,验证了模型对于小当量浅水爆炸气泡的适用性。未来研究将综合考虑流体可压缩性、
               黏性效应及复杂边界条件等因素的影响,以提升模型的普适性。


               参考文献:
               [1]   LAMB H. The early stages of a submarine explosion [J]. The London, Edinburg and Dublin Philosophical Magazine and
                    Journal of Science, 1923: 257–265. DOI: 10.1080/14786442308634111.
               [2]   RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical [J]. The London, Edinburg and Dublin
                    Philosophical Magazine and Journal of Science, 1917: 94–98. DOI: 10.1080/14786440808635681.
               [3]   KELLER J, KOLODNER I I. Damping of underwater explosion bubble oscillations [J]. Journal of Apply Physics, 1956, 27:
                    1152. DOI: 10.1063/1.1722221.
               [4]   KELLER J, MIKSIS M. Bubble oscillations of large amplitude [J]. Journal of the Acoustical Society of American, 1980, 68:
                    628. DOI: 10.1121/1.384720.
               [5]   PROSPERETTI  A,  LEZZI  A.  Bubble  dynamics  in  a  compressible  liquid.  part  1.  first-order  theory  [J].  Journal  of  Fluid
                    Mechanics , 1986: 457–478. DOI: 10.1017/S0022112086000460.
               [6]   LEZZI A, PROSPERETTI A. Bubble dynamics in a compressible liquid. part 2. second-order theory [J]. Journal of Fluid
                    Mechanics, 1987, 185: 289–321. DOI: 10.1017/S0022112087003185.
               [7]   GEERS T L. Transient response analysis of complex submerged structures [J]. Journal of the Acoustical Society of America,
                    1974, 55(S1): 26–26. DOI: 10.1121/1.1919626.
               [8]   GEERS  T  L,  HUNTER  K  S.  An  integrated  wave-effects  model  for  an  underwater  explosion  bubble  [J].  Journal  of  the
                    Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.
               [9]   GEERS  T  L.  Residual  potential  and  approximate  methods  for  three-dimensional  fluid-structure  interaction  problems  [J].
                    Journal of the Acoustical Society of America, 1971, 49(5B): 1505–1510. DOI: 10.1121/1.1912526.
               [10]   COLE R H. Underwater explosions [M]. Princeton: Princeton University Press, 1948.
               [11]   HUNTER K S, GEERS T L. Pressure and velocity fields produced by an underwater explosion [J]. Journal of the Acoustical
                    Society of America, 2004, 115(4): 1483–1496. DOI: 10.1121/1.1648680.
               [12]   VERNON  T  A.  Whipping  response  of  ship  hulls  from  underwater  explosion  bubble  loading  [R].  Dartmouth:  National
                    Defence, Research and Development Branch, 1986.
               [13]   ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323. DOI:
                    10.1063/5.0145415.
               [14]   ZHANG A M, LI S M, XU R Z, et al. A theoretical model for compressible bubble dynamics considering phase transition and
                    migration [J]. Journal of Fluid Mechanics, 2024, 999: A58. DOI: 10.1017/jfm.2024.954.
               [15]   周霖, 谢中元, 陈勇. 炸药水下爆炸气泡脉动周期工程计算方法 [J]. 兵工学报, 2009, 30(9): 1202–1205. DOI: 10.3321/j.
                    issn:1000-1093.2009.09.010.
                    ZHOU  L,  XIE  Z  Y,  CHEN  Y.  Engineering  calculation  method  of  bubble  pulsation  period  for  underwater  explosion  of
                    explosives [J]. Acta Armamentarii, 2009, 30(9): 1202–1205. DOI: 10.3321/j.issn:1000-1093.2009.09.010.
               [16]   王树山, 梁策, 高源, 等. 深水爆炸二次压力波超压峰值的工程模型 [J]. 兵工学报, 2022, 43(10): 2508–2516. DOI: 10.
                    12382/bgxb.2021.0560.
                    WANG S S, LIANG C, GAO Y, et al. Engineering model of overpressure peak of secondary pressure wave in deep water


                                                         011104-9
   69   70   71   72   73   74   75   76   77   78   79