Page 170 - 《爆炸与冲击》2026年第01期
P. 170
第 46 卷 第 1 期 爆 炸 与 冲 击 Vol. 46, No. 1
2026 年 1 月 EXPLOSION AND SHOCK WAVES Jan., 2026
DOI:10.11883/bzycj-2025-0037
金属桥箔电爆炸驱动飞片过程流场瞬态
观测与数值模拟 *
伍俊英,郑富德,姚雨乐,李钧剑,刘瑞政,刘丹阳
(北京理工大学爆炸科学与安全防护全国重点实验室,北京 100081)
摘要: 金属桥箔电爆炸驱动绝缘飞片的冲击起爆与点火技术在武器装备的起爆与点火系统中被广泛应用。为弥
补现有研究对飞片运动过程中流场演化规律描述不足的缺陷,促进该技术向能量高效利用以及小型化等方面发展,搭
建了双脉冲激光纹影瞬态观测实验系统,获得了不同时刻下流场的密度分布以及飞片的运动距离,同时,建立了金属
桥箔电爆炸驱动飞片运动过程的二维轴对称流体动力学计算模型与计算方法,计算时充分考虑了加速膛内外流场在
飞片运动、冲击波压缩以及高温高压等离子体膨胀等作用下的演化规律,采用相变体积分数法描述桥箔在电能作用下
由固相到等离子体相的转变,建立了等离子体状态方程以准确描述等离子体的状态,采用动网格模型描述了飞片在流
场驱动下的运动。计算与实验得到的流场密度分布具有较好的贴合性,且飞片运动距离和飞片运动速度的最大相对
误差分别为 6.1% 与 8.1%,验证了计算模型与计算方法的准确性。研究结果表明:电容为 0.33 μF、起爆电压为 2 800 V
7
时,研究范围内,流场压强最大值基本维持在 1×10 Pa 左右;流场温度逐渐从 516 ns 时刻的 9 950 K 降低到 2 310 ns 时的
3 100 K;流场等离子体相分布逐渐由扁平状发展为长条状,等离子体相与飞片运动垂直方向的最大扩散距离为 0.8 mm。
1 360 ns 后,由于飞片突破冲击波波阵面,流场的压强分布与温度分布的前端突起。
关键词: 金属桥箔;电爆炸;飞片;流场
中图分类号: O383; TJ45 国标学科代码: 13035 文献标志码: A
Transient observation and numerical simulation study on the flow field of
flyer driven by the electric explosion of metal foil
WU Junying, ZHENG Fude, YAO Yule, LI Junjian, LIU Ruizheng, LIU Danyang
(State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China)
Abstract: Shock initiation and ignition techniques driven by electrically exploded metallic bridge foils with insulating flyers
have been widely implemented in initiation and ignition system of weapon. To address the deficiency in existing research
regarding the description of the flow field evolution during the motion of flyer and promote the development of this technology
towards efficient energy utilization and miniaturization, a double-pulse laser schlieren transient observation system was
constructed. This system enables the acquisition of density distributions of the flow field and the motion distance of the flyer at
different time. Additionally, a two-dimensional axisymmetric fluid dynamics calculation model and calculation method for the
motion process of flyer driven by the electric explosion of metal foil were established, and corresponding numerical simulation
calculations were performed in consideration of the evolution laws of the flow field inside and outside the acceleration chamber
under the effects of the motion of flyer, the compression of shock wave, and the expansion of high-temperature and high-
pressure plasma. The phase transition of bridge foil from solid phase to plasma phase was described by phase transition
fraction, the state of plasma with high temperature and pressure was described by the state equation of plasma which consider
the changes in particle number and coulomb interaction between particles, and the motion of flyer was described by dynamic
* 收稿日期: 2025-02-14;修回日期: 2025-07-16
基金项目: 爆炸科学与安全防护全国重点实验室开放基金 (KFJJ20-04M)
第一作者: 伍俊英(1976- ),女,博士,副教授,wjy1312@bit.edu.cn
014101-1

