Page 56 - 《爆炸与冲击》2025年第12期
P. 56
第 45 卷 郑 成,等: 基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法 第 12 期
2465–2475. DOI: 10.3969/j.issn.1000-1093.2021.11.020.
[17] 甘宏伟, 陈威, 李吉峰, 等. 加筋板架结构与均质靶板等效关系的数值分析 [J]. 四川兵工学报, 2010, 31(11): 20–22. DOI:
10.3969/j.issn.1006-0707.2010.11.007.
GAN H W, CHEN W, LI J F, et al. Numerical analysis of the equivalent relationship between the stiffened plate frame
structure and the homogeneous target plate [J]. Journal of Ordnance Equipment Engineering, 2010, 31(11): 20–22. DOI:
10.3969/j.issn.1006-0707.2010.11.007.
[18] 宋卫东, 宁建国, 张中国, 等. 多层加筋靶板的侵彻模型与等效方法 [J]. 弹道学报, 2004, 16(3): 49–54. DOI: 10.3969/j.
issn.1004-499X.2004.03.010.
SONG W D, NING J G, ZHANG Z G, et al. Penetration model and equivalence method of multi-layered stiffened plates [J].
Journal of Ballistics, 2004, 16(3): 49–54. DOI: 10.3969/j.issn.1004-499X.2004.03.010.
[19] 黄松. 舰船易损性分析中船用钢的等效靶研究 [D]. 太原: 中北大学, 2019: 61–70.
HUANG S. Research on equivalent target of marine steel invulnerabilityanalysis of warship [D]. Taiyuan: North University of
China, 2019: 61–70.
[20] 郭子涛, 高斌, 郭钊, 等. 基于 J-C 模型的 Q235 钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/
bzycj-2016-0333.
GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock
Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
[21] 林莉, 支旭东, 范锋, 等. Q235B 钢 Johnson-Cook 模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158,172. DOI:
10.13465/J.CNKI.JVS.2014.09.028.
LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration
and Shock, 2014, 33(9): 153–158,172. DOI: 10.13465/J.CNKI.JVS.2014.09.028.
[22] 姜涛, 纪冲, 刘影, 等. 爆炸荷载下 Q345B 钢圆管结构的损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(1): 224–230.
DOI: 10.11809/bqzbgcxb2021.01.040.
JIANG T, JI C, LIU Y, et al. Study on damage effect of Q345B steel pipe subjected to blast load [J]. Journal of Ordnance
Equipment Engineering, 2021, 42(1): 224–230. DOI: 10.11809/bqzbgcxb2021.01.040.
[23] 朱昱. 基于 Johnson-Cook 模型的 Q355B 钢动态本构关系研究 [D]. 哈尔滨: 哈尔滨理工大学, 2019: 30–40.
ZHU Y. Research on dynamic constitutive relationship of Q355B steel based on Johnson-Cook model [D]. Harbin: Harbin
University of Science andTechnology, 2019: 30–40.
[24] 李营, 汪玉, 吴卫国, 等. 船用 907A 钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129. DOI:
10.3969/j.issn.1006-7043.201311093.
LI Y, WANG Y, WU W G, et al. Dynamic mechanical behavior and constitutive relation of the ship-built steel 907A [J].
Journal of Harbin Engineering University, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.
[25] 陈继恩. 基于应力三轴度的材料失效研究 [D]. 武汉: 华中科技大学, 2012.
CHEN J E. Research of material failure basic on stress triaxiality [D]. Wuhan: Huazhong University of Science and
Technology, 2012.
[26] 徐磊, 卢永锦. 火灾爆炸作用下 921A 钢力学性能及本构关系 [J]. 船舶工程, 2019, 41(1): 69–73. DOI: 10.13788/j.cnki.cbgc.
2019.01.13.
XU L, LU Y J. Mechanical properties and constitutive relation of steel 921A under effects of fire and explosion [J]. Ship
Engineering, 2019, 41(1): 69–73. DOI: 10.13788/j.cnki.cbgc.2019.01.13.
[27] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental
study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2.
[28] ZHAO Y P. Saturated duration of rectangular pressure pulse applied to rectangular plates with finite-deflections [J].
Mechanics Research Communications, 1997, 24(6): 659–666. DOI: 10.1016/S0093-6413(97)00084-0.
[29] ZHU L, YU T X. Saturated impulse for pulse-loaded elastic-plastic square plates [J]. International Journal of Solids and
Structures, 1997, 34(14): 1709–1718. DOI: 10.1016/S0020-7683(96)00111-4.
[30] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究 [J]. 兵工学报, 2018, 39(8): 1582–1589. DOI: 10.3969/
j.issn.1000-1093.2018.08.015.
ZHENG C, KONG X S, ZHOU H, et al. On the deformation of thin plates subjected to confined blast loading [J]. Acta
Armamentarii, 2018, 39(8): 1582–1589. DOI: 10.3969/j.issn.1000-1093.2018.08.015.
(责任编辑 张凌云)
122201-14

