Page 28 - 《爆炸与冲击》2025年第9期
P. 28
第 45 卷 刘 江,等: 有限长锥体诱导的斜爆轰波非定常结构的数值研究 第 9 期
论对爆轰波阵面的不同结构进行了讨论,得到如下结论。
(1) 具有轴对称结构的有限长尖锥,爆轰波后流场受到 Taylor-Maccoll 流动和 Prandtl-Meyer 膨胀波
的影响,其流动处于非均匀状态。
(2) 激波与化学反应的非线性耦合和波后的非均匀流场对爆轰波结构产生较大的影响,使其呈现
4 种不同的结构:光滑的类 ZND 结构、单三波点的类胞格结构、双三波点的胞格结构和 Prandtl-Meyer 影
响的非规则双三波点结构。
(3) 根据爆轰波阵面三波点的轨迹绘制的爆轰胞格结构,呈现与其结构对应的特征:光滑平面结构、
平行直线结构、斜菱形结构和不规则的斜菱形结构。与此同时,在爆轰波的双三波点结构中,面向上游
传播的爆轰波更强。
参考文献:
[1] 范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征 [J]. 力学进展, 2012, 42(2): 162–169. DOI: 10.6052/1000-
0992-2012-2-20120204.
FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in
propulsion [J]. Advances in Mechanics, 2012, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
[2] LI C, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks [J]. Physics of Fluids, 1994, 6(4):
1600–1611. DOI: 10.1063/1.868273.
[3] TENG H H, ZHAO W, JIANG Z L. A novel oblique detonation structure and its stability [J]. Chinese Physics Letters, 2007,
24(7): 1985–1988. DOI: 10.1088/0256-307X/24/7/055.
[4] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素 [J]. 推进技术, 2012, 33(3): 490–494. DOI: 10.13675/
j.cnki.tjjs.2012.03.002.
GUI M Y, FAN B C. Fine structure and its influence factor of wedge-induced oblique detonation waves [J]. Journal of
Propulsion Technology, 2012, 33(3): 490–494. DOI: 10.13675/j.cnki.tjjs.2012.03.002.
[5] TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations [J]. Journal of Fluid
Mechanics, 2014, 744(2): 111–128. DOI: 10.1017/jfm.2014.78.
[6] LIU Y, LIU Y S, WU D, et al. Structure of an oblique detonation wave induced by a wedge [J]. Shock Waves, 2016, 26(2):
161–168. DOI: 10.1007/s00193-015-0600-5.
[7] LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length
wedge [J]. Shock Waves, 2016, 26(6): 729–739. DOI: 10.1007/s00193-016-0626-3.
[8] YANG L, YUE L, ZHANG Q, et al. Numerical study on the shock/combustion interaction of oblique detonation waves [J].
Aerospace Science and Technology, 2020, 104: 105938. DOI: 10.1016/j.ast.2020.105938.
[9] 王爱峰, 赵伟, 姜宗林. 斜爆轰的胞格结构及横波传播 [J]. 爆炸与冲击, 2010, 30(4): 349–354. DOI: 10.11883/1001-
1455(2010)04-0349-06.
WANG A F, ZHAO W, JIANG Z L. Cellular structure of oblique detonation and propagation of transverse wave [J].
Explosion and Shock Waves, 2010, 30(4): 349–354. DOI: 10.11883/1001-1455(2010)04-0349-06.
[10] YANG P, LI H, CHEN Z, et al. Numerical investigation on movement of triple points on oblique detonation surfaces [J].
Physics of Fluids, 2022, 34(6): 066113. DOI: 10.1063/5.0091078.
[11] YAO K, WANG C, JIANG Z. A numerical study of oblique detonation re-stabilization by expansion waves [J]. Aerospace
Science and Technology, 2022, 122: 107409. DOI: 10.1016/j.ast.2022.107409.
[12] 刘岩, 武丹, 王健平. 低马赫数下斜爆轰波的结构 [J]. 爆炸与冲击, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455
(2015)02-0203-05.
LIU Y, WU D, WANG J P. Structure of oblique detonation wave at low inflow Mach number [J]. Explosion and Shock
Waves, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455(2015)02-0203-05.
[13] ZHANG Z, WEN C, ZHANG W, et al. Formation of stabilized oblique detonation waves in a combustor [J]. Combustion and
Flame, 2021, 223: 423–436. DOI: 10.1016/j.combustflame.2020.09.034.
[14] ZHANG G Q, GAO S F, XIANG G X. Study on initiation mode of oblique detonation induced by a finite wedge [J]. Physics
092101-10