Page 29 - 《爆炸与冲击》2025年第9期
P. 29
第 45 卷 刘 江,等: 有限长锥体诱导的斜爆轰波非定常结构的数值研究 第 9 期
of Fluids, 2021, 33(1): 016102. DOI: 10.1063/5.0035960.
[15] VERREAULT J, HIGGINS A J. Initiation of detonation by conical projectiles [J]. Proceedings of the Combustion Institute,
2011, 33(2): 2311–2318. DOI: 10.1016/j.proci.2010.07.086.
[16] KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles [J].
AIAA Journal, 2001, 39(8): 1553–1561. DOI: 10.2514/2.1480.
[17] 董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性研究 [J]. 兵工学报, 2010, 31(4): 401–408.
DONG G, FAN B C, LI H Z. An investigation on instability of deflagration and detonation induced by conical shock wave [J].
Acta Armamentarii, 2010, 31(4): 401–408.
[18] YANG P, NG H D, TENG H, et al. Initiation structure of oblique detonation waves behind conical shocks [J]. Physics of
Fluids, 2017, 29(8): 086104. DOI: 10.1063/1.4999482.
[19] HAN W, WANG C, LAW C K. Three-dimensional simulation of oblique detonation waves attached to cone [J]. Physical
Review Fluids, 2019, 4(5): 053201. DOI: 10.1103/PhysRevFluids.4.053201.
[20] ABISLEIMAN S, SHARMA V, BIELAWSKI R, et al. Structure of three-dimensional conical oblique detonation waves [J].
Combustion and Flame, 2025, 274: 113971. DOI: 10.1016/j.combustflame.2025.113971.
[21] STURTZER M O, TOGAMI K, YAMASHITA S, et al. Detonation wave generated by a hypervelocity projectile [J]. Heat
Transfer Research, 2007, 38(4): 291–297. DOI: 10.1615/HeatTransRes.v38.i4.10.
[22] 李俊红, 沈清, 程晓丽. 曲面激波诱导斜爆轰的数值模拟 [J]. 推进技术, 2019, 40(11): 2521–2527. DOI: 10.13675/j.
cnki.tjjs.190041.
LI J H, SHEN Q, CHENG X L. Numerical simulation on shock-induced detonation [J]. Journal of Propulsion Technology,
2019, 40(11): 2521–2527. DOI: 10.13675/j.cnki.tjjs.190041.
[23] MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time
resolution optical observation [J]. Combustion and Flame, 2012, 159(2): 887–896. DOI: 10.1016/j.combustflame.2011.09.001.
[24] 周平, 范宝春, 归明月. 可燃介质中飞行圆球诱导斜爆轰的流场结构 [J]. 爆炸与冲击, 2012, 32(3): 278–282. DOI:
10.11883/1001-1455(2012)03-0278-05.
ZHOU P, FAN B C, GUI M Y. Flow pattern of oblique detonation induced by a hyperve locity ball in combustible gas [J].
Explosion and Shock Waves, 2012, 32(3): 278–282. DOI: 10.11883/1001-1455(2012)03-0278-05.
[25] ANDERSON J D. Modern compressible flow: with historical perspective [M]. New York: McGraw-Hill, 1990: 167–371.
[26] BOURLIOUX A, MAJDA A J. Theoretical and numerical structure for unstable two-dimensional detonations [J]. Combustion
and Flame, 1992, 90(3): 211–229. DOI: 10.1016/0010-2180(92)90084-3.
[27] KURGANOV A, NOELLE S, PETROVA G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and
Hamilton-Jacobi equations [J]. SIAM Journal on Scientific Computing, 2001, 23(3): 707–740. DOI: 10.1137/S1064827500
373413.
[28] BADER G, DEUFLHARD P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations [J].
Numerische Mathematik, 1983, 41(3): 373–398. DOI: 10.1007/BF01418331.
[29] GUI M Y, FAN B C, DONG G. Periodic oscillation and fine structure of wedge-induced oblique detonation waves [J]. Acta
Mechanica Sinica, 2011, 27(6): 922–928. DOI: 10.1007/s10409-011-0508-y.
(责任编辑 张凌云)
092101-11