Page 143 - 《爆炸与冲击》2023年第2期
P. 143
第 43 卷 陈源捷,等: 基于ESGA遗传算法的水射流自驱旋转喷头优化设计 第 2 期
果与原方案相比,其冲击能量分布均匀度分别提升了 47.2% 和 45.2%,前者优化幅度优于后者。
(2) 基于船壁爬壁机器人载体平台,以钢制船壁基材表面达到 Sa2.5 为清洁标准,对经 ESGA 算法优
化后的喷头进行试验验证。试验结果表明,ESGA 优化方案较原设计方案除锈效率提高 42.0%。
该喷头布局优化技术不仅可以用于优化原布局方案,还可以根据实际技术要求直接在概念设计前
期进行喷头快速布局设计。然而,该方法目前仍然存在一些不足,由于自驱旋转型喷头的布置较复杂,
通常需要调整喷嘴的冲击角来使喷头达到期望的转速,而目前仅考虑喷头布局位置参数,未将喷头转速
纳入优化约束中。因此,后续将针对上述问题进一步开展相关的研究工作,以更加全面、有效地解决此
类问题。
参考文献:
[1] ZHANG F F, SUN X R, LI Z P, et al. Influence of processing parameters on coating removal for high pressure water jet
technology based on wall-climbing robot [J]. Applied Sciences, 2020, 10(5): 1862. DOI: 10.3390/app10051862.
[2] 薛胜雄. 超高压水射流自动爬壁除锈机理与成套设备技术 [D]. 杭州: 浙江大学, 2005.
XUE S X. Studies on the removal rust forming by UHP waterjetting auto-robot and its unit technology [D]. Hangzhou:
Zhejiang University, 2005.
[3] 衣正尧, 弓永军, 王祖温, 等. 用于搭载船舶除锈清洗器的大型爬壁机器人 [J]. 机器人, 2010, 32(4): 560–567. DOI: 10.
3724/SP.J.1218.2010.00560.
YI Z Y, GONG Y J, WANG Z W, et al. Large wall climbing robots for boarding ship rust removal cleaner [J]. Robot, 2010,
32(4): 560–567. DOI: 10.3724/SP.J.1218.2010.00560.
[4] GERO M B P, GARCÍA A B, DEL COZ DÍAZ J J. A modified elitist genetic algorithm applied to the design optimization of
complex steel structures [J]. Journal of Constructional Steel Research, 2005, 61(2): 265–280. DOI: 10.1016/j.jcsr.2004.07.007.
[5] YILDIZELI A, CADIRCI S. Multi-objective optimization of multiple impinging jet system through genetic algorithm [J].
International Journal of Heat and Mass Transfer, 2020, 158: 119978. DOI: 10.1016/j.ijheatmasstransfer.2020.119978.
[6] ALHAMAYDEH M, BARAKAT S, NASIF O. Optimization of support structures for offshore wind turbines using genetic
algorithm with domain-trimming [J]. Mathematical Problems in Engineering, 2017, 2017: 5978375. DOI: 10.1155/2017/
5978375.
[7] FU X Y, LEI L, YANG G, et al. Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-
dominated sorting genetic algorithm [J]. Ocean Engineering, 2018, 157: 339–349. DOI: 10.1016/j.oceaneng.2018.03.055.
[8] ZAIN A M, HARON H, SHARIF S. Genetic algorithm and simulated annealing to estimate optimal process parameters of the
abrasive waterjet machining [J]. Engineering with computers, 2011, 27(3): 251–259. DOI: 10.1007/s00366-010-0195-5.
[9] SRINIVASU D S, BABU N R. A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting
considering variation in diameter of focusing nozzle [J]. Applied Soft Computing, 2008, 8(1): 809–819. DOI: 10.1016/j.asoc.
2007.06.007.
[10] 屈长龙, 王喜顺. 基于 FLUENT 的高压水射流除锈的流场仿真及射流参数优化 [J]. 机械与电子, 2016, 34(2): 24–27.
DOI: 10.3969/j.issn.1001-2257.2016.02.006.
QU C L, WANG X S. Jet flow simulation and parameters optimization of high pressure water jet for derusting based on
FLUENT [J]. Machinery & Electronics, 2016, 34(2): 24–27. DOI: 10.3969/j.issn.1001-2257.2016.02.006.
[11] CAI C, WANG X C, YUAN X H, et al. Experimental investigation on perforation of shale with ultra-high pressure abrasive
water jet: shape, mechanism and sensitivity [J]. Journal of Natural Gas Science and Engineering, 2019, 67: 196–213. DOI:
10.1016/j.jngse.2019.05.002.
[12] 孙玲, 弓永军, 王祖温, 等. 超高压旋转清洗盘的设计及密封分析 [J]. 中国机械工程, 2014, 25(13): 1715–1718. DOI:
10.3969/j.issn.1004-132X.2014.13.003.
SUN L, GONG Y J, WANG Z W, et al. Design and sealing analysis of ultra-high pressure water cleaning rotary device [J].
China Mechanical Engineering, 2014, 25(13): 1715–1718. DOI: 10.3969/j.issn.1004-132X.2014.13.003.
[13] 陈正寿, 黄璐云, 杜炳鑫, 等. 超高压水射流喷头水动力特性研究 [J]. 爆炸与冲击, 2022, 42(5): 053303. DOI: 10.11883/
024201-13