Page 342 - 《软件学报》2020年第9期
P. 342
董晓 等:面向稀疏卷积神经网络的 GPU 性能优化方法 2963
References:
[1] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Bartlett PL, Pereira
FCN, Burges CJC, Bottou L, Weinberger KQ, eds. Proc. of the Advances in Neural Information Processing Systems (NIPS). Lake
Tahoe: Curran Associates, 2012. 1106−1114.
[2] He K, Gkioxari G, Dollár P, Girshick RB. Mask r-CNN. In: Proc. of the IEEE Int’l Conf. on Computer Vision (ICCV). Venice:
IEEE Computer Society, 2017. 2980−2988.
[3] Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu CY, Berg AC. SSD: Single shot multibox detector. In: Leibe B, Matas J,
Sebe N, Welling M, eds. Proc. of the European Conf. on Computer Vision (ECCV), Vol.9905. Amsterdam: Springer-Verlag, 2016.
21−37.
[4] Chen X, Ma H, Wan J, Li B, Xia T. Multi-View 3D object detection network for autonomous driving. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE Computer Society, 2017. 6526−6534.
[5] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Guyon I,
von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R, eds. Proc. of the Advances in Neural
Information Processing Systems (NIPS). Long Beach: Curran Associates, 2017. 5998−6008.
[6] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). Las Vegas: IEEE Computer Society, 2016. 770−778.
[7] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-Based learning applied to document recognition. Proc. of the IEEE, 1998,86(11):
2278−2324.
[8] Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: A large-scale hierarchical image database. In: Proc. of the IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR). Miami: IEEE Computer Society, 2009. 248−255.
[9] Ye S, Zhang T, Zhang K, Li J, Xu K, Yang Y, Yu F, Tang J, Fardad M, Liu S, Chen X, Lin X, Wang Y. Progressive weight pruning
of deep neural networks using admm. CoRR, abs/1810.07378, 2018.
[10] Guo Y, Yao A, Chen Y. Dynamic network surgery for efficient dnns. In: Lee DD, Sugiyama M, von Luxburg U, Guyon I, Garnett
R, eds. Proc. of the Advances in Neural Information Processing Systems (NIPS). Barcelona: Curran Associates, 2016. 1379−1387.
[11] Han S, Mao H, Dally WJ. Deep compression: compressing deep neural network with pruning, trained quantization and huffman
coding. In: Bengio Y, LeCun Y, eds. Proc. of the Int’l Conf. on Learning Representations (ICLR). San Juan, 2016.
[12] Gale T, Elsen E, Hooker S. The state of sparsity in deep neural networks. CoRR, abs/1902.09574, 2019.
[13] Tinney WF, Walker JW. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. of the
IEEE, 1967,55(11):1801−1809.
[14] Smith S, Ravindran N, Sidiropoulos ND, Karypis G. SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In: Proc.
of the IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS). Hyderabad: IEEE Computer Society, 2015. 61−70.
[15] Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E. CuDNN: Efficient primitives for deep learning.
CoRR, abs/1410.0759, 2014.
[16] Nvidia C. Cublas library. Santa Clara: NVIDIA Corporation 2008,15(27):31.
[17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Bengio Y, LeCun Y, eds. Proc.
of the Int’l Conf. on Learning Representations (ICLR). San Diego, 2015.
[18] He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks. In: Proc. of the IEEE Int’l Conf. on Computer
Vision (ICCV). Venice: IEEE Computer Society, 2017. 1398−1406.
[19] Li H, Kadav A, Durdanovic I, Samet H, Graf HP. Pruning filters for efficient convnets. In: Bengio Y, LeCun Y, eds. Proc. of the
Int’l Conf. on Learning Representations (ICLR). Toulon, 2017.
[20] Wen W, Wu C, Wang Y, Chen Y, Li H. Learning structured sparsity in deep neural networks. In: Lee D D, Sugiyama M, von
Luxburg U, Guyon I, Garnett R, eds. Proc. of the Advances in Neural Information Processing Systems (NIPS). Barcelona: Curran
Associates, 2016. 2074−2082.
[21] Han S, Pool J, Tran J, Dally WJ. Learning both weights and connections for efficient neural network. In: Cortes C, Lawrence ND,
Lee DD, Sugiyama M, Garnett R, eds. Proc. of the Advances in Neural Information Processing Systems (NIPS). Montreal: Curran
Associates, 2015. 1135−1143.
[22] Dong X, Chen S, Pan SJ. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In: Guyon I, von Luxburg
U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R, eds. Proc. of the Advances in Neural Information Processing
Systems (NIPS). Long Beach: Curran Associates, 2017. 4857−4867.
[23] Naumov M, Chien L, Vandermersch P, Kapasi U. Cusparse library. In: Proc. of the GPU Technology Conf. 2010.