Page 28 - 《软件学报》2020年第9期
P. 28

葛道辉  等:轻量级神经网络架构综述                                                               2649


         要有减少卷积核的数量、减少特征的通道数以及设计更高效的卷积操作等关键技术,但是非常依赖设计者的经
         验.如何有效地将针对特定问题的先验知识加入到模型构建过程中,是未来研究的重点方向.通过网络剪枝、权
         重压缩和低秩分解是对已有的网络进行压缩,但是压缩算法需要设计者探索较大的设计空间以及在模型大小、
         速度和准确率之间权衡.为了减少人为因素的干扰,自动机器学习技术是未来研究的热点,联合优化深度神经网
         络流程的所有模型参数.神经网络架构搜索的研究主要集中在深度神经网络上,许多搜索架构都源自 NASNet                                   [6]
         搜索空间,通过各种搜索算法在定义的搜索空间内自动生成的,广泛应用于解决图像识别、图像分割和语言建
         模等任务    [6,7,98,99] ,但是只能针对某一特定或同一类型的数据集.如何使用跨不同数据集的知识来加速优化过程,
         是未来研究的热点.其他的挑战是联合优化深度神经网络流程的所有模型参数.到目前为止,深度神经网络的通
         用自动化仍处于起步阶段,许多问题尚未得到解决.然而,这仍然是一个令人兴奋的领域,并且未来的工作的方
         向需要强调其突出的实用性.
             轻量级模型的发展使得神经网络更加高效,从而能够广泛地应用到各种场景任务中.一方面,轻量级神经网
         络有更小的体积和计算量,降低了对设备存储能力和计算能力的需求,既可以装配到传统家电中使其更加智能
         化,也可以将深度学习系统应用在虚拟现实、增强现实、智能安防和智能可穿戴设备等新兴技术中;另一方面,
         轻量级神经网络具有更快的运行速度和更短的延时,能够对任务进行实时处理,对于在线学习、增量学习和分
         布式学习有重大意义;另外,实时处理的神经网络能够满足自动驾驶技术的需求,提高自动驾驶的安全性.轻量
         级神经网络将对于人工智能技术的普及、建立智能化城市起不可或缺的作用.

         References:
          [1]    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proc. of the 3rd Int’l Conf. on
             Learning Representations. 2015.
          [2]    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
             Pattern Recognition. 2016. 770−778.
          [3]    Huang G, Liu Z,  Maaten LVD, Weinberger K. Densely connected convolutional  networks.  In:  Proc.  of  the IEEE Conf.  on
             Computer Vision and Pattern Recognition. 2017. 4700−4708.
          [4]    Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman
             coding. In: Proc. of the 4th Int’l Conf. on Learning Representations. 2016.
          [5]    He Y, Lin J, Liu Z, Wang H, Li L, Han S. AMC: Automl for model compression and acceleration on mobile devices. In: Proc. of
             the European Conf. on Computer Vision. 2018. 784−800.
          [6]    Zoph B, Vasudevan V, Shlens JV, Le Q. Learning transferable architectures for scalable image recognition. In: Proc. of the IEEE
             Conf. on Computer Vision and Pattern Recognition. 2018. 8697−8710.
          [7]    Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard AV, Le Q.  Mnasnet: Platform-aware neural architecture search for
             mobile. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 2820−2828.
          [8]    Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: Efficient convolutional
             neural networks for mobile vision applications. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017.
             432−445.
          [9]    Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proc. of
             the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 6848−6856.
         [10]    Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: Inverted residuals and linear bottlenecks. In: Proc. of the
             IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 4510−4520.
         [11]    Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J. ThunderNet: Towards real-time generic object detection on mobile devices. In:
             Proc. of the IEEE Int’l Conf. on Computer Vision. 2019. 6718−6727.
         [12]    Ma N, Zhang X, Zheng H,  Sun  J. ShuffleNet V2:  Practical  guidelines for efficient cnn architecture  design.  In:  Proc.  of the
             European Conf. on Computer Vision. 2018. 116−131.
         [13]    Landola FN, Han S, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer
             parameters and <0.5MB model size. In: Proc. of the 5th Int’l Conf. on Learning Representations. 2017.
         [14]    Bergstra  JS, Bardenet  R, Bengio Y, Kégl B. Algorithms  for  hyper-parameter  optimization. In:  Proc.  of  the Advances in Neural
             Information Processing Systems. 2011. 2546−2554.
   23   24   25   26   27   28   29   30   31   32   33