Page 32 - 《软件学报》2020年第9期
P. 32

葛道辉  等:轻量级神经网络架构综述                                                               2653


         [90]    Domhan  T, Springenberg JT, Hutter F. Speeding up  automatic hyperparameter optimization of deep neural networks by
             extrapolation of learning curves. In: Proc. of the 24th Int’l Joint Conf. on Artificial Intelligence. 2015.
         [91]    Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N, Patwary M, Prabhat, Adams R. Scalable Bayesian optimization
             using deep neural networks. In: Proc. of the 32nd Int’l Conf. on Machine Learning. 2015. 2171−2180
         [92]    Klein A, Falkner S, Springenberg JT, Hutter F. Learning curve prediction with Bayesian neural networks. In: Proc. of the 5th Int’l
             Conf. on Learning Representations. 2017.
         [93]    Baker B, Gupta O, Raskar R, Naik N. Accelerating neural architecture search using performance prediction. In: Proc. of the 6th
             Int’l Conf. on Learning Representations. 2018.
         [94]    Wei T, Wang C, Rui Y, Chen C. Network morphism. In: Proc. of the 33nd Int’l Conf. on Machine Learning. 2016. 564−572.
         [95]    Runge F, Stoll D, Falkner S, Hutter F. Learning to design RNA. In: Proc. of the 7th Int’l Conf. on Learning Representations. 2019.
         [96]    Li L,  Jamieson K, De  Salvo G,  Rostamizadeh A, Talwalkar A.  Hyperband: A  novel  bandit-based approach  to  hyperparameter
             optimization. Journal of Machine Learning Research, 2017,18(185):1−52.
         [97]    Xie S,  Zheng  H,  Liu  C,  Lin L. SNAS: Stochastic  neural  architecture search.  In: Proc. of the 7th Int’l  Conf. on  Learning
             Representations. 2019.
         [98]    Weng Y, Zhou T, Li Y, Qiu X. NAS-Unet: Neural architecture  search  for medical image segmentation. IEEE Access,  2019,7:
             44247−44257.
         [99]    Liu C, Chen LC, Schroff F, Adam H, Hua W, Yuille A, Li FF. Auto-Deeplab: Hierarchical neural architecture search for semantic
             image segmentation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 82−92.


                       葛道辉(1994-),男,博士生,CCF 学生会                     刘如意(1989-),女,博士,讲师,CCF 专业
                       员,主要研究领域为深度学习,计算机视                           会员,主要研究领域为计算机视觉,机器学
                       觉,目标跟踪.                                      习,目标分割提取.



                       李洪升(1994-),男,博士生,主要研究领域                      沈沛意(1969-),男,博士,教授,CCF 专业
                       为深度学习,视频分类,动作识别.                             会员 , 主要研究 领域为计算机 视觉 ,
                                                                    DSPFPGA 理论及应用,数字图像处理,计
                                                                    算机网络.


                       张亮(1981-),男,博士,副教授,博士生导                      苗启广(1972-),男,博士,教授,博士生导
                       师,主要研究领域为嵌入式多核系统,机器                          师,CCF 杰出会员,主要研究领域为计算机
                       人语义 SLAM,三维场景语义分割,手势                         视觉,机器学习,大数据分析.
                       识别.
   27   28   29   30   31   32   33   34   35   36   37