Page 156 - 《软件学报》2020年第12期
P. 156

3822                                Journal of Software  软件学报 Vol.31, No.12, December 2020

         [39]    Van Craenendonck T, Blockeel H. Constraint-Based clustering selection. Machine Learning, 2017,106(9-10):1497−1521.
         [40]    Yu H, Wang X, Wang G, Zeng X. An active three-way clustering method via low-rank matrices for multi-view data. Information
             Science, 2018,576−582.
         [41]    Eriksson B, Dasarathy G,  Singh A, Nowak R. Active clustering: Robust and efficient  hierarchical clustering  using adaptively
             selected similarities. In: Proc. of the Int’l Conf. on Artificial Intelligence and Statistics. 2011. 260−268.
         [42]    Mai ST, He X, Hubig N, Plant C, Bohm C. Active density-based clustering. In: Proc. of the Int’l Conf. on Data Mining. 2013.
             508−517.
         [43]    Guo  Y, Schuurmans D.  Discriminative batch  mode  active learning. In: Proc. of the  Advances in Neural Information Processing
             Systems. 2008. 593−600.
         [44]    Schohn G, Cohn D. Less is more: Active learning with support vector machines. In: Proc. of the Int’l Conf. on Machine Learning.
             2000. 839−846.
         [45]    Chakraborty S, Balasubramanian V, Panchanathan S. Adaptive batch mode active learning. IEEE Trans. on Neural Networks and
             Learning Systems, 2015,26(8):1747−1760.
         [46]    Cai  W, Zhang  M, Zhang Y. Batch mode  active  learning  for  regression with expected model change.  IEEE Trans.  on Neural
             Networks and Learning Systems, 2017,28(7):1668−1681.
         [47]    Ravi S, Larochelle H. Meta-Learning for batch mode active learning. In: Proc. of the Int’l Conf. on Learning Representations. 2018.
             137−149.
         [48]    Li YF, Wang H, Wei  T, Tu  WW. Towards automated  semi-supervised  learning.  In:  Proc.  of the AAAI Conf.  on Artificial
             Intelligence. Honolulu, HI, 2019. 4237−4244.
         [49]     Huang SJ.  主动学习年度进展. Dalian:  大连理工大学, 2018 (in Chinese).

         附中文参考文献:
         [19]  周志华.基于分歧的半监督学习.自动化学报,2013,39(11):1871−1878.
         [49]  黄圣君.主动学习年度进展.大连:大连理工大学,2018.


                       李延超(1990-),男,博士,讲师,主要研究                      陈志(1978-),男,博士,教授,CCF 专业会
                       领域为人工智能,大数据管理.                               员,主要研究领域为软件工程,无线传感
                                                                    网,物联网,数据挖掘.



                       肖甫 (1980 - ), 男 , 博士 , 教授 , 博士生导             李博(1979-),男,高级工程师,主要研究领
                       师,CCF 高级会员,主要研究领域为传感                         域为自然语言处理,知识图谱.
                       网,物联网.
   151   152   153   154   155   156   157   158   159   160   161