Page 156 - 《软件学报》2020年第12期
P. 156
3822 Journal of Software 软件学报 Vol.31, No.12, December 2020
[39] Van Craenendonck T, Blockeel H. Constraint-Based clustering selection. Machine Learning, 2017,106(9-10):1497−1521.
[40] Yu H, Wang X, Wang G, Zeng X. An active three-way clustering method via low-rank matrices for multi-view data. Information
Science, 2018,576−582.
[41] Eriksson B, Dasarathy G, Singh A, Nowak R. Active clustering: Robust and efficient hierarchical clustering using adaptively
selected similarities. In: Proc. of the Int’l Conf. on Artificial Intelligence and Statistics. 2011. 260−268.
[42] Mai ST, He X, Hubig N, Plant C, Bohm C. Active density-based clustering. In: Proc. of the Int’l Conf. on Data Mining. 2013.
508−517.
[43] Guo Y, Schuurmans D. Discriminative batch mode active learning. In: Proc. of the Advances in Neural Information Processing
Systems. 2008. 593−600.
[44] Schohn G, Cohn D. Less is more: Active learning with support vector machines. In: Proc. of the Int’l Conf. on Machine Learning.
2000. 839−846.
[45] Chakraborty S, Balasubramanian V, Panchanathan S. Adaptive batch mode active learning. IEEE Trans. on Neural Networks and
Learning Systems, 2015,26(8):1747−1760.
[46] Cai W, Zhang M, Zhang Y. Batch mode active learning for regression with expected model change. IEEE Trans. on Neural
Networks and Learning Systems, 2017,28(7):1668−1681.
[47] Ravi S, Larochelle H. Meta-Learning for batch mode active learning. In: Proc. of the Int’l Conf. on Learning Representations. 2018.
137−149.
[48] Li YF, Wang H, Wei T, Tu WW. Towards automated semi-supervised learning. In: Proc. of the AAAI Conf. on Artificial
Intelligence. Honolulu, HI, 2019. 4237−4244.
[49] Huang SJ. 主动学习年度进展. Dalian: 大连理工大学, 2018 (in Chinese).
附中文参考文献:
[19] 周志华.基于分歧的半监督学习.自动化学报,2013,39(11):1871−1878.
[49] 黄圣君.主动学习年度进展.大连:大连理工大学,2018.
李延超(1990-),男,博士,讲师,主要研究 陈志(1978-),男,博士,教授,CCF 专业会
领域为人工智能,大数据管理. 员,主要研究领域为软件工程,无线传感
网,物联网,数据挖掘.
肖甫 (1980 - ), 男 , 博士 , 教授 , 博士生导 李博(1979-),男,高级工程师,主要研究领
师,CCF 高级会员,主要研究领域为传感 域为自然语言处理,知识图谱.
网,物联网.