Page 154 - 《软件学报》2020年第12期
P. 154

3820                                Journal of Software  软件学报 Vol.31, No.12, December 2020

                       Table 4    The architecture of the convolutional network of Mean Teacher model
                                    表 4   Mean Teacher 模型的网络结构和参数
                                  网络层                               超参数
                                   输入                         28(32)×28(32)像素图像
                               转化(translation)                  随机{Δx,Δy}~[−2,2]
                            水平反转(horizontal flip)                  随机 p=0.5
                                 高斯噪声                               σ=0.15
                                  卷积层                    128 卷积核 3×3,填充为 0(same padding)
                                  卷积层                    128 卷积核 3×3,填充为 0(same padding)
                                  卷积层                    128 卷积核 3×3,填充为 0(same padding)
                                  池化层                             最大池化 2×2
                                  Dropout                           p=0.5
                                  卷积层                    256 卷积核 3×3,填充为 0(same padding)
                                  卷积层                    256 卷积核 3×3,填充为 0(same padding)
                                  卷积层                    256 卷积核 3×3,填充为 0(same padding)
                                  池化层                             最大池化 2×2
                                  Dropout                           p=0.5
                                  卷积层                     512 卷积核 3×3,“丢弃”(valid padding)
                                  卷积层                    256 卷积核 1×1,填充为 0(same padding)
                                  卷积层                    128 卷积核 1×1,填充为 0(same padding)
                                  池化层                          平均池化(6×6→1×1)
                                  softmax                           全连接

         References:
          [1]    Andriluka M, Pishchulin L, Gehler P, Schiele B. 2D human pose estimation: New benchmark and state of the art analysis. In: Proc.
             of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 3686−3693.
          [2]    Settles B. Active learning literature survey. Technical Report 1648. University of Wisconsin-Madison, 2009.
          [3]    Tong S,  Koller  D. Support vector  machine  active learning with  applications to text  classification. Journal of  Machine  Learning
             Research, 2001,2(Nov.):45−66.
          [4]    Xu Z, Yu K, Tresp V, Xu X, Wang J. Representative sampling for text classification using support vector machines. In: Proc. of the
             European Conf. on Information Retrieval. Berlin, Heidelberg: Springer-Verlag, 2003. 393−407.
          [5]    Brinker K. Incorporating diversity in active learning with support vector machines. In: Proc. of the Int’l Conf. on Machine Learning.
             2003. 59−66.
          [6]    Chattopadhyay R, Wang Z, Fan W, Davidson I, Panchanathan S, Ye J. Batch mode active sampling based on marginal probability
             distribution matching. ACM Trans. on Knowledge Discovery from Data, 2013,7(3):1−25.
          [7]    Wang  Z,  Ye J. Querying discriminative  and representative  samples for batch mode  active learning. ACM  Trans. on  Knowledge
             Discovery from Data, 2015,9(3):1−23.
          [8]    Zhang Y, Lease M, Wallace BC. Active  discriminative text  representation learning. In:  Proc. of  the AAAI  Conf. on  Artificial
             Intelligence. 2017. 3386−3392.
          [9]    Donmez P, Carbonell JG, Bennett PN. Dual strategy active learning. In: Proc. of the European Conf. on Machine Learning. Berlin,
             Heidelberg: Springer-Verlag, 2007. 116−127.
         [10]    Huang SJ, Jin  R,  Zhou  ZH.  Active learning by querying informative  and  representative  examples. In: Proc. of the  Advances  in
             Neural Information Processing Systems. 2010. 892−900.
         [11]    Du B, Wang Z, Zhang L, Zhang L, Liu W, Shen J, Tao D. Exploring representativeness and informativeness for active learning.
             IEEE Trans. on Cybernetics, 2017,47(1):14−26.
         [12]    Li YC, Wang YL, Yu DJ, Hu P, Zhao RX. ASCENT: Active supervision for Semi-Supervised learning. IEEE Trans. on Knowledge
             and Data Engineering, 2020,32(5):868−882.
         [13]    Hoi SC, Jin R, Zhu J, Lyu MR. Semi-Supervised SVM batch mode active learning with applications to image retrieval. ACM Trans.
             on Information Systems, 2009,27(3):1−29.
         [14]    Yin C, Qian B, Cao S, Li X, Wei J, Zheng Q, Davidson I. Deep similarity-based batch mode active learning with exploration-
             exploitation. In: Proc. of the IEEE Int’l Conf. on Data Mining. 2017. 575−584.
   149   150   151   152   153   154   155   156   157   158   159