Page 140 - 《软件学报》2020年第12期
P. 140

3806                                Journal of Software  软件学报 Vol.31, No.12, December 2020

         法.该方法首先对汉语和越南语进行句法解析,得到句法解析树;然后,将句法解析树信息转化为向量表示;最后,
         将得到的句法向量融入到神经机器翻译模型编码器的输入中.本文在汉语-越南语、英语-越南语上进行了实验,
         同时又对比了不同深度的卷积神经网络、不同大小卷积核对实验结果的影响.结果表明:融入源语言句法解析
         树信息,能够有效提高汉-越神经机器翻译模型的性能.当然,该方法也存在一些不足,由于越南语在分词、词性标
         记以及句法解析的准确率不足,导致训练过程中的特征提中存在错误,影响最终神经机器翻译模型的性能.在未
         来的工作中,我们会探索从神经机器翻译模型的方面进行改进,进一步提升汉-越神经机器翻译模型的性能.

         References:
          [1]    Sutskever  I,  Vinyals  O,  Le QV. Sequence to sequence learning with neural networks. In: Proc. of the  Advances in  Neural
             Information Processing Systems 27 (NIPS 2014). 2014. 3104−3112.
          [2]    Eriguchi A, Hashimoto K, Tsuruoka Y. Tree-to-Sequence attentional neural machine  translation. In:  Proc.  of the  54th Annual
             Meeting of the Association for Computational Linguistics. 2016. 823−833.
          [3]    Eriguchi A, Tsuruoka Y, Cho K. Learning to parse and translate improves neural machine translation. In: Proc. of the 55th Annual
             Meeting of the Association for Computational Linguistics. 2017. 72−78.
          [4]    Aharoni R, Goldberg Y. Towards string-to-tree neural machine translation. In: Proc. of the 55th Annual Meeting of the Association
             for Computational Linguistics. 2017. 132−140.
          [5]    Pust M, Hermjakob U, Knight K, Marcu D, May J. Using syntax-based machine translation to parse English into abstract meaning
             representation. Computer Science, 2015, 482−489.
          [6]    Wu NR, Su YL, Liu WW, Ren QDEJ. Mongolian-Chinese machine translation base on CNN etyma morphological selection model.
             Journal of Chinese Information Processing, 2018,32(5):42−48 (in Chinese with English abstract).
          [7]    Bao WGDL, Zhao  XB. Mongolian-Chinese  neural machine  translation  base  on RNN and CNN.  Journal  of Chinese  Information
             Processing, 2018,32(8):60−67 (in Chinese with English abstract).
          [8]    Gehring J, Auli M, Grangier D, Grangier D, Yarats D, Dauphin YN. Convolutional sequence to sequence learning. In: Proc. of the
             34th Int’l Conf. on Machine Learning (ICML 2017), Vol.70. 2017. 1243−1252.
          [9]    Meng FD, Lu ZD, Wang MX, Li H, Jiang WB, Liu Q. Encoding source language with convolutional neural network for machine
             translation. In: Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int’l Joint Conf. on
             Natural Language Processing. 2015. 20−30.
         [10]    Marcheggiani D, Titov I. Encoding sentences with graph convolutional networks for semantic role labeling. In: Proc. of the 55th
             Annual Meeting of the Association for Computational Linguistics. 2017. 1506−1515.
         [11]    Gehring J, Auli M, Grangier D, Dauphin Y. A convolutional encoder model for neural machine translation. In: Proc. of the 55th
             Annual Meeting of the Association for Computational Linguistics. 2017. 123−135
         [12]    Trinh M, Tran P, Tran N. Collecting Chinese-Vietnamese texts from bilingual websites. In: Proc. of the 5th NAFOSTED Conf. on
             Information and Computer Science (NICS). 2018. 260−264.
         [13]    Tran P, Dinh D, Nguyen LHB. Word re-segmentation in Chinese-Vietnamese machine translation. ACM Trans. on Asian and Low-
             Resource Language Information Processing, 2016,16(2):1−22.
         [14]    Huu AT, Huang HY, Guo Y, Shi SM, Jian P. Integrating pronunciation into Chinese-Vietnamese statistical machine translation.
             Tsinghua Science and Technology, 2018,23(6):83−91.
         [15]    Phuoc T, Dien D, Nguyen HT. A character level based and word level based approach for Chinese-Vietnamese machine translation.
             Computational Intelligence and Neuroscience, 2016,2016(2):1−11.
         [16]    Tran P, Le T, Dinh D, et al. Handling organization name unknown word in Chinese-Vietnamese machine translation. In: Proc. of
             the 2013 RIVF Int’l Conf. on Computing & Communication Technologies—Research, Innovation, and Vision for Future (RIVF).
             2013. 242−247.
         [17]    He YJL, Yu ZT, Lv CT, Lai H, Gao SX, Zhang Y. Language post positioned characteristic based Chinese-Vietnamese statistical
             machine translation method. In: Proc. of the 21st Int’l Conf. on Asian Language Processing (IALP). 2017.
         [18]    Wu SZ, Zhang DD, Yang N, Li M, Zhou M. Sequence-to-dependency neural machine translation. In: Proc. of the 55th Annual
             Meeting of the Association for Computational Linguistics. 2017. 698−707.
   135   136   137   138   139   140   141   142   143   144   145