Page 41 - 《软件学报》2020年第10期
P. 41
徐梦炜 等:面向移动终端智能的自治学习系统 3017
[7] Li L, Xiong H, Wang J, Xu CZ, Guo Z. SmartPC: Hierarchical pace control in real-time federated learning system. In: Proc. of the
IEEE Real-time Systems Symp. (RTSS 2019). 2019.
[8] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K. Practical secure aggregation
for privacy-preserving machine learning. In: Proc. of the 2017 ACM SIGSAC Conf. on Computer and Communications Security.
2017. 1175–1191.
[9] Vaidya J, Kantarcıoğlu M, Clifton C. Privacy-preserving naive bayes classification. The VLDB Journal, 2008,17(4):879–898.
[10] Graepel T, Lauter K, Naehrig M. ML confidential: Machine learning on encrypted data. In: Proc. of the Int’l Conf. on Information
Security and Cryptology 2012. Berlin, Heidelberg: Springer-Verlag, 2012. 1–21.
[11] Nandakumar K, Ratha N, Pankanti S, Halevi S. Towards deep neural network training on encrypted data. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition Workshops. 2019.
[12] Xiong P, Zhu T, Wang X. A Survey on differential privacy and applications. Chinese Journal of Computers, 2014,37(1):101–122 (in
Chinese with English abstract).
[13] Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Proc. of the 22nd ACM SIGSAC Conf. on Computer and
Communications Security. 2015. 1310–1321.
[14] Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated learning. arXiv Preprint arXiv: 1807.00459,
2018.
[15] Chellappa RK, Sin RG. Personalization versus privacy: An empirical examination of the online consumer’s Dilemma. Information
Technology and Management, 2005,6(2/3):181–202.
[16] Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecny J, Mazzocchi S, McMahan HB, Van
Overveldt T. Towards federated learning at scale: System design. In: Proc. of the SysML. 2019.
[17] Zhuang F, Luo P, He Q, Shi Z. Survey on transfer learning research. Ruan Jian Xue Bao/Journal of Software, 2015,26(1):26–39 (in
Chinese with English abstract). http://www.jos.org.cn/1000-9825/4631.htm [doi: 10.13328/j.cnki.jos.004631]
[18] Xue J, Li J, Gong Y. Restructuring of deep neural network acoustic models with singular value decomposition. In: Proc. of the
Interspeech. 2013. 2365–2369.
[19] Wei JW, Zou K. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In: Proc. of the
EMNLP/IJCNLP (1). 2019. 6381–6387.
[20] Chen T, Moreau T, Jiang Z, Zheng L, Yan E, Shen H, Cowan M, Wang L, Hu Y, Ceze L, Guestrin C. TVM: An automated
end-to-end optimizing compiler for deep learning. In: Proc. of the 13th USENIX Symp. on Operating Systems Design and
Implementation (OSDI 18). 2018. 578–594.
[21] Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F, Amarasinghe S. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Notices, 2013,48(6):519–530.
[22] Zerrell T, Bruestle J. Stripe: Tensor compilation via the nested polyhedral model. arXiv Preprint arXiv: 1903.06498, 2019.
[23] Lei J, Gao X, Song J, Wang XL, Song ML. Survey of deep neural network model compression. Ruan Jian Xue Bao/Journal of
Software, 2018,29(2):251–266 (in Chinese with English abstract). http://wwww,.jos.org.cn/1000-9825/5428.htm [doi: 10.13328/j.
cnki.jos.005428]
[24] Xu M, Qian F, Zhu M, Huang F, Pushp S, Liu X. Deepwear: Adaptive local offloading for on-wearable deep learning. IEEE Trans.
on Mobile Computing, 2019,19(2):314–330.
[25] Xu M, Zhu M, Liu Y, Lin FX, Liu X. DeepCache: Principled cache for mobile deep vision. In: Proc. of the 24th Annual Int’l Conf.
(MobiCom). 2018. 129–144.
[26] Yang TJ, Howard A, Chen B, Zhang X, Go A, Sandler M, Sze V, Adam H. Netadapt: Platform-aware neural network adaptation for
mobile applications. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 285–300.
[27] Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV. MNASnet: Platform-aware neural architecture search for
mobile. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 2820–2828.
[28] Yang TJ, Chen YH, Sze V. Designing energy-efficient convolutional neural networks using energy-aware pruning. In: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 5687–5695.
[29] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997,9(8):1735–1780.