Page 256 - 《软件学报》2020年第10期
P. 256

3232                                  Journal of Software  软件学报 Vol.31, No.10, October 2020

               Tabel 4    Accuracies of the feature dictionaries built under eight different conditions (%) (Continued)
                           表 4  8 种不同条件下建立的特征字典对应的模型分类精度(%)(续)
                    特征评价指标            tf-idf  tf-idf  tf-idf  Chi  tf-idf  Chi   Chi    Chi
                       阈值           Dynamic  0.3    0.3     3      0      3       2      2
                      单词长度           Variable  Variable  Variable  Variable  Variable  Fixed  Fixed  Fixed
                     n 0 语法模型       Unigram  Unigram Bigrams  Unigram  Unigram  Unigram  Unigram Bigrams
                      Dataset        TDVU   T0.3VU  T0.3VB  C3VU  T0VU   C3FU   C2FU   C2FB
                    ProximalPOAG      84.6   85.6   85.8    86    84.4   84.4    83.9   83.9
                    ProximalPOC       89.9   89.3   88.7   89.6   90.1   86.9    88.3   88
                    ProximalPTW       80.7   78.2   82.1   80.2   79.4    81     81.5   78
                    RefrigerationD    57.8   51.4   53.2   52.5   51.6   51.2    51.6   52.8
                     ScreenType       52.6   55.1   53.9   53.8   55.8   56.8    58.5   53.3
                     ShapeletSim      100    100    100    98.8   76.5    100    96.1   100
                    SmallKitchenA     76.3    77    76.7   76.5   78.7   76.3    75.2   75.7
                  SonyAIBORobotS1     84.1   82.7   78.9   82.8   82.7   79.5    85     81.9
                  SonyAIBORobotS2     95.6   94.6   94.4   91.3   95.6   89.2    93.7   94.8
                     Strawberry       97.3   97.8   97.6   97.5   97.3   98.1    97.8   97.6
                     SwedishLeaf      96.4   96.3   96.2   96.3   96.5   95.8    96.3   96.4
                      Symbols         95.9   95.7   96.7   95.8   96.6   95.5    95.5   96.1
                   SyntheticControl   98.8    99    98.7   98.8   98.6   99.3    99.3   99
                   ToeSegmentation1   96.5   94.3   94.8   94.3    94    91.2    89.5   95.2
                   ToeSegmentation2   89.5   85.9   89.4   83.2   90.2   78.5    81.5   82.3
                       Trace          100    100    100    100     100    100    100    100
                    TwoLeadECG        99.9   99.9   99.9   99.9   99.8   92.2    95.6   99.4
                     TwoPatterns      99.3   99.2   99.3   99.3   99.3   99.1    99.1   98.9
                       Wafer          100    100    100    100     100    100    100    100
                       Wine           86.4   89.6   89.3   85.9    87    70.4    75.9   85.6
                   WordsSynonyms      70.7    71    70.8   71.5   70.3   71.3    70.8   71.6
                       Yoga           91.6   90.7   92.2   87.2   90.9    84     85.8   90.4
                      平均值             84.6   83.9   84.1   83.5   84.3   82.2    82.8   83.7
                     最大值个数            22      14     15     13     18     12     13     17
             上面表 4 中我们将各特征字典构建模型符号表示中的 TfIdf 简记为 T,Chi 简记为 C,Dynamic 简记为 D,
         VLWEA_X 和 FLWEA_X 分别简记为 VX 和 FX,X 表示使用的 n 0 元特征生成模型,U 表示 Unigram,B 表示
         Bigrams.例如,模型 TfIDfDynamicVLWEA_U 记作 TDVU.表 4 中每行加粗数值表示对应行的最优值.


























                     Fig.6    Comparison of accuracy between VLWEA and 6 BOP models on 65 datasets
                          图 6   VLWEA 和 6 个 BOP 模型在 65 个数据集上的分类精度比较
   251   252   253   254   255   256   257   258   259   260   261