Page 260 - 《软件学报》2020年第10期
P. 260

3236                                  Journal of Software  软件学报 Vol.31, No.10, October 2020

         [10]    Hoppner F. Improving time series similarity measures by integrating preprocessing steps. Data Mining and Knowledge Discovery,
             2017,31(3):851–878. [doi: 10.1007/s10618-016-0490-x]
         [11]    Yuan JD, Douzal-Chouakria  A,  Yazdi SV, Wang  ZH.  A  large  margin time series nearest  neighbour  classification under locally
             weighted time warps. Knowledge and Information Systems, 2018,59(1):117−135. [doi: 10.1007/s10115-018-1184-z]
         [12]    Yuan JD, Wang ZH, Han M. Shapelet pruning and shapelet coverage for time series classification. Ruan Jian Xue Bao/Journal of
             Software, 2015,26(9):2311–2325 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4702.htm [doi: 10.13328/j.
             cnki.jos.004702]
         [13]    Yuan JD, Wang ZH, Han M, You Y. A logical shapelets transformation for time series classification. Chinese Journal of Computers,
             2015,38(7):1448–1459 (in Chinese with English abstract). [doi: 0.11897/SP.J.1016.2015.01448]
         [14]    Neuyen TL, Gsponer S, Ifrim G. Time series classification by sequence learning in all-subsequence space. In: Proc. of the 33th Int’l
             Conf. on Data Engineering (ICDE 2017). San Diego: IEEE, 2017. 947–958. [doi: 10.1109/ICDE.2017.142]
         [15]    Shi M, Wang Z, Yuan J, Liu H. Random pairwise shapelets forest. In: Proc. of the 22th Pacific-Asia Conf. on Knowledge Discovery
             and Data Mining (PAKDD 2018). Cham: Springer-Verlag, 2018. 68–80. [doi: 10.1007/978-3-319-93034-3_6]
         [16]    Bostrom A, Bagnall A. Binary  shapelet transform for multiclass  time  series classification.  In: Hameurlain A, ed. Trans.  on
             Large-scale Data- and Knowledge-centered Systems XXXII. LNCS 10420, Berlin: Springer-Verlag, 2017. 24–46. [doi: 10.1007/
             978-3-662-55608-5_2]
         [17]    Bagnall A, Lines J, Hills J, Bostrom A. Time-series classification with COTE: The collective of transformation-based ensembles.
             IEEE Trans. on Knowledge and Data Engineering, 2015,27(9):2522–2535. [doi: 10.1109/TKDE.2015.2416723]
         [18]    Lin J, Keogh E, Li W, Lonardi S. Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge
             Discovery, 2007,15(2):107–144. [doi: 10.1007/s10618-007-0064-z]
         [19]    Senin P, Malinchik S. SAX-VSM: Interpretable time series classification using SAX and vector space model. In: Proc. of the 13th
             IEEE Int’l Conf. on Data Mining (ICDM2013). Dallas: IEEE, 2013. 1175−1180. [doi: 10.1109/ICDM.2013.52]
         [20]    Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. In: Proc. of the 4th Int’l Conf. on Foundations
             of Data Organization and Algorithms. Berlin, Heidelberg: Springer-Verlag, 1993. 69–84. [doi: 10.1007/3-540-57301-1_5]
         [21]    Rafiei D, Mendelzon A. Efficient retrieval of similar time sequences using DFT. In: Proc. of the 5th Int’l Conf. of Foundations of
             Data Organization (FODO 1998). Kobe: IEEE, 1998. 249–257. [doi: 10.1109/icde.1998.655778]
         [22]    Schafer P, Högqvist M. SFA: A symbolic Fourier approximation and index for similarity search in high dimensional datasets. In:
             Proc. of the 15th Int’l Conf. on Extending Database Technology. Berlin: ACM, 2012. 516–527. [doi: 10.1145/2247596.2247656]
         [23]    Schafer P. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery,
             2015,29(6):1505–1530. [doi: 10.1007/s10618-014-0377-7]
         [24]    Schafer  P, Leser U.  Fast and accurate  time series classification with WEASEL.  In:  Proc.  of the  26th ACM  Int’l Conf.  on
             Information and Knowledge Management (CIKM 2017). ACM, 2017. 637–646. [doi: 10.1145/3132847.3132980]
         [25]    Oppenheim AV, Schafer RW. Digital Signal Processing. Englewood Cliffs: Prentice Hall, 1975.
         [26]    Erra U, Senatore S, Minnella F, Caggianese G. Approximate TF-IDF based on topic extraction from massive message stream using
             the GPU. Information Sciences, 2015,292:143–161. [doi: 10.1016/j.ins.2014.08.062]
         [27]    Chen K, Zhang Z, Long J, Zhang H. Turning from TF-IDF to TF-IGM for term weighting in text classification. Expert Systems with
             Applications, 2016,66:245–260. [doi: 10.1016/j.eswa.2016.09.009]
         [28]    Schafer P. Scalable time series  classification.  Data  Mining  and Knowledge Discovery, 2016,30(5):1273–1298. [doi: 10.1007/
             s10618-015-0441-y]
         [29]    Fan  RE,  Chang KW, Hsieh CJ,  Wang  XR, Lin CJ. LIBLINEAR: A  library  for  large linear classification.  Journal  of Machine
             Learning Research, 2008,9:1871–1874.
         [30]    Bagnall A, Lines J, Vickers W, Keogh E. The UEA & UCR time series classification repository. http://www.timeseriesclassification.
             com
         [31]    Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006,7(1):1–30.
         [32]    Rakthanmanon T, Keogh E. Fast shapelets: A scalable algorithm for discovering time series shapelets. In: Proc. of the 13th SIAM
             Int’l Conf. on Data Mining. Austin: SIAM Press, 2013. 668–676. [doi: 10.1137/1.9781611972832.74]
   255   256   257   258   259   260   261   262   263   264   265