Page 169 - 《软件学报》2020年第10期
P. 169

张倩颖  等:抗电路板级物理攻击的操作系统防御技术研究                                                      3145


         [109]    Wu YM, Liu YT, Liu RF, Chen HB, Zang BY, Guan HB. Comprehensive VM protection against untrusted hypervisor through
              retrofitted AMD memory encryption.  In:  Proc. of  the  IEEE  24th Int’l  Symp.  on High Performance Computer Architecture
              (HPCA). IEEE, 2018. 441–453. [doi: 10.1109/HPCA.2018.00045]
         [110]    Palutke R, Neubaum A, Götzfried J. SEVGuard: Protecting user mode applications using secure encrypted virtualization. In: Proc.
              of the  15th Int’l  Conf’ on Security  and Privacy in  Communication Systems (SecureComm).  Cham: Springer-Verlag, 2019.
              224–242. [doi: 10.1007/978-3-030-37231-6_12]
         [111]    Henson M, Taylor S. Beyond full disk encryption: protection on security-enhanced commodity processors. In: Proc. of the 11th
              Int’l Conf. on Applied Cryptography and Network Security (ACNS). Berlin, Heidelberg: Springer-Verlag, 2013. 307–321. [doi:
              10.1007/978-3-642-38980-1_19]
         [112]    Zhang MY, Zhang QY, Zhao SJ, Shi ZP, Guan Y. SoftME: A software-based memory protection approach for TEE system to
              resist physical attacks. Security and Communication Networks, 2019,8690853:1–12. [doi: 10.1155/2019/8690853]
         [113]    Zhang MY. Research on defending physical attacks for trusted execution environment based on on-chip memory [MS. Thesis].
              Beijing: Capital Normal University, 2019 (in Chinese with English abstract).
         [114]    Ishida R, Honda S, Takada H, Fukui A, Ogawa T, Tawara Y. TOPPERS/FMP kernel: RTOS for embedded multiprocessor systems
              with real-time tasks and throughput-demanding tasks. Computer Software, 2012,19(4):219–243. [doi: 10.11309/jssst.29.4_219]
         [115]    Götzfried J, Dörr N, Palutke R, Müller T. Hypercrypt: Hypervisor-based encryption of kernel and user space. In: Proc. of the 11th
              Int’l Conf. on Availability, Reliability and Security (ARES). IEEE, 2016. 79–87. [doi: 10.1109/ARES.2016.13]
         [116]    Horsch J, Huber M, Wessel S. TransCrypt: Transparent main memory encryption using a minimal ARM hypervisor. In: Proc. of
              the 16th IEEE Int’l Conf. on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE, 2017. 152–161.
              [doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.232]
         [117]    Gueron S. Memory encryption for general-purpose processors. IEEE Security & Privacy, 2016,14(6):54–62.
         [118]    Boudguiga  A,  Klaudel W, Wesolowski JD.  On the performance of freescale i.MX6  cryptographic  acceleration  and  assurance
              module. In: Proc. of the 7th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO). 2015.
              1–8. [doi: 10.1145/2693433.2693441]
         [119]    Hennessy JL, Patterson DA. A new golden age for computer architecture. Communications of the ACM, 2019,62(2):48–60. [doi:
              10.1145/3282307]
         [120]    Lee D,  Kohlbrenner  D, Shinde S,  Asanović K,  Song D. Keystone: An  open  framework  for architecting  trusted execution
              environments. In:  Proc. of  the 15th  European  Conf. on  Computer Systems (EuroSys).  ACM, 2020. 38:1–38:16.  [doi: 10.1145/
              3342195.3387532]
         [121]    Ferraiuolo A,  Baumann A,  Hawblitzel  C, Parno  B. Komodo:  Using verification to disentangle secure-enclave hardware from
              software. In: Proc. of the 26th Symp. on Operating Systems Principles (SOSP). ACM, 2017. 287–305. [doi: 10.1145/3132747.
              3132782]
         [122]    Jouppi NP, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. In: Proc. of the 44th Annual
              Int’l Symp. on Computer Architecture (ISCA). ACM, 2017. 1–12. [doi: 10.1145/3079856.3080246]
         [123]    Chen TS, Du ZD, Sun NH, Wang J, Wu CY, Chen YJ, Temam O. DianNao: A small-footprint high-throughput accelerator for
              ubiquitous machine-learning. In: Proc. of the 19th Int’l Conf. on Architectural Support for Programming Languages and Operating
              Systems (ASPLOS). ACM, 2014. 269–284. [doi: 10.1145/2541940.2541967]
         [124]    Chen YJ, Luo T, Liu SL, Zhang SJ, He LQ, Wang J, Li L, Chen TS, Xu ZW, Sun NH, Temam O. DaDianNao: A machine-learning
              supercomputer. In: Proc. of the 47th Annual IEEE/ACM Int’l Symp. on Microarchitecture (MICRO). IEEE, 2014. 609–622. [doi:
              10.1109/MICRO.2014.58]
         [125]    Du ZD, Fasthuber R, Chen TS, Ienne P, Li L, Luo T, Feng XB, Cheng YJ, Temam O. ShiDianNao: Shifting vision processing
              closer to the sensor. In: Proc. of the 42nd Annual Int’l Symp. on Computer Architecture (ISCA). ACM, 2015. 92–104. [doi: 10.
              1145/2749469.2750389]
         [126]    Liu DF, Chen TS, Liu SL, Zhou JH, Zhou SY, Temam O, Feng XB, Zhou XH, Cheng YJ. PuDianNao: A polyvalent machine
              learning accelerator. In: Proc. of the 20th Int’l Conf. on Architectural Support for Programming Languages and Operating Systems
              (ASPLOS). ACM, 2015. 369–381. [doi: 10.1145/2694344.2694358]
         [127]    Tromer E, Osvik DA, Shamir A. Efficient cache attacks on AES, and countermeasures. Journal of Cryptology, 2010,23(1):37–71.
              [doi: 10.1007/s00145-009-9049-y]
   164   165   166   167   168   169   170   171   172   173   174