Page 137 - 《摩擦学学报》2021年第6期
P. 137
922 摩 擦 学 学 报 第 41 卷
3 结论 temperatures[J]. Nature Communications, 2016, 7: 10602. doi: 10.
1038/ncomms10602.
a. 采用真空感应熔炼技术制备了CoCrFeMoNiC x [ 9 ] Cantor B, Chang I T H, Knight P, et al. Microstructural development
(x=0、1、2、3、4和5)系列中熵合金,该合金主要由BCC in equiatomic multicomponent alloys[J]. Materials Science and
相组成且组织为等轴晶. C的添加促进了条状碳化物 Engineering A, 2004, 375-377: 213–218. doi: 10.1016/j.msea.2003.
10.257.
的生成,有利于改善合金的强度和硬度等力学性能.
[10] Otto F, Dlouhý A, Somsen C, et al. The influences of temperature
b. 随着C含量的增加,C原子的间隙固溶强化和
and microstructure on the tensile properties of a CoCrFeMnNi high-
碳化物第二相强化的共同作用使CoCrFeMoNiC 中熵 entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743–5755. doi: 10.
x
合金的力学性能得以明显改善. 其中,C 合金的洛氏 1016/j.actamat.2013.06.018.
5
硬度、屈服强度、压缩强度、断裂应变和断裂韧性分别为 [11] Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMo x high entropy
0.5
34.1 HRC、997 MPa、208 8 MPa、43.2%和41.2 MPa·m , alloys strengthened by hard intermetallic phases[J]. Acta Materialia,
具有良好的综合力学性能. 2016, 116: 332–342. doi: 10.1016/j.actamat.2016.06.063.
[12] Xin Benbin, Zhang Aijun, Han Jiesheng, et al. Tuning composition
c. CoCrFeMoNiC 中熵合金的磨损率随C含量的
x
and microstructure by doping Ti and C for enhancing mechanical
增加而降低,耐磨性得到显著改善. 当C质量分数为
property and wear resistance of Al 0.2 Co 1.5 CrFeNi 1.5 Ti 0.5 high
3
−5
5%时,该合金的磨损率为0.95×10 mm /(N·m),表现
entropy alloy matrix composites[J]. Journal of Alloys and
出良好的耐磨性. CoCrFeMoNiC 中熵合金在室温下 Compounds, 2020, 836: 155273. doi: 10.1016/j.jallcom.2020.
x
的磨损机制主要为磨粒磨损,同时存在塑性变形和疲 155273.
劳磨损. [13] Wang Zhangwei, Baker I, Cai Zhonghou, et al. The effect of
interstitial carbon on the mechanical properties and dislocation
参 考 文 献
substructure evolution in Fe 40.4 Ni 11.3 Mn 34.8 Al 7.5 Cr 6 high entropy
[ 1 ] Zhang Yong, Zuo Ting ting, Tang Zhi, et al. Microstructures and alloys[J]. Acta Materialia, 2016, 120: 228–239. doi: 10.1016/j.
properties of high-entropy alloys[J]. Progress in Materials Science, actamat.2016.08.072.
2014, 61: 1–93. doi: 10.1016/j.pmatsci.2013.10.001. [14] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on
[ 2 ] Miracle D B, Senkov O N. A critical review of high entropy alloys stability of fcc or bcc phase in high entropy alloys[J]. Journal of
and related concepts[J]. Acta Materialia, 2017, 122: 448–511. doi: Applied physics, 2011, 109(10): 103505. doi: 10.1063/1.3587228.
10.1016/j.actamat.2016.08.081. [15] Hu Conghui, Zhang Jianlei, Zhang Yunhu, et al. Phase modulation
[ 3 ] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy of BCC-structured Fe 35 Mn 25 Al 15 Cr 10 Ni 15 high-entropy alloy by
alloys with multiple principal elements: novel alloy design concepts interstitial carbon[J]. Journal of Iron and Steel Research
and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): International, 2018, 25(8): 877–882. doi: 10.1007/s42243-018-0125-0.
299–303. doi: 10.1002/adem.200300567. [16] Kwon H, Moon J, Bae J W, et al. Precipitation-driven metastability
[ 4 ] Jain H, Shadangi Y, Shivam V, et al. Phase evolution and engineering of carbon-doped CoCrFeNiMo medium-entropy alloys
mechanical properties of non-equiatomic Fe-Mn-Ni-Cr-Al-Si-C high at cryogenic temperature[J]. Scripta Materialia, 2020, 188: 140–145.
entropy steel[J]. Journal of Alloys and Compounds, 2020, 834: doi: 10.1016/j.scriptamat.2020.07.023.
155013. doi: 10.1016/j.jallcom.2020.155013. [17] Zhou J H, Shen Y F, Hong Y Y, et al. Strengthening a fine-grained
[ 5 ] Lu Xiaochong, Zhao Jianfeng, Yu Chao, et al. Cyclic plasticity of an low activation martensitic steel by nanosized carbides[J]. Materials
interstitial high-entropy alloy: experiments, crystal plasticity Science and Engineering:A, 2020, 769: 138471. doi: 10.1016/j.msea.
modeling, and simulations[J]. Journal of the Mechanics and Physics 2019.138471.
of Solids, 2020, 142: 103971. doi: 10.1016/j.jmps.2020.103971. [18] Kameda J, McMahon C J. The effects of Sb, Sn, and P on the
[ 6 ] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of strength of grain boundaries in a Ni-Cr Steel[J]. Metallurgical
Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high Transactions A, 1981, 12(1): 31–37. doi: 10.1007/BF02648505.
entropy alloys[J]. Intermetallics, 2011, 19(5): 698–706. doi: 10. [19] Mi C W, Buttry D A, Sharma P, et al. Atomistic insights into
1016/j.intermet.2011.01.004. dislocation-based mechanisms of void growth and coalescence[J].
[ 7 ] Guo S. Phase selection rules for cast high entropy alloys: an Journal of the Mechanics and Physics of Solids, 2011, 59:
overview[J]. Materials Science and Technology, 2015, 31(10): 1858–1871. doi: 10.1016/j.jmps.2011.05.008.
1223–1230. doi: 10.1179/1743284715Y.0000000018. [20] Zhang Aijun, Han Jiesheng, Su Bo, et al. Tribological properties of
[ 8 ] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional AlCoCrFeNi high entropy alloy at elevated temperature[J].
damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic Tribology, 2017, 37(6): 776–783 (in Chinese) [张爱军, 韩杰胜, 苏