Page 137 - 《摩擦学学报》2021年第6期
P. 137

922                                     摩   擦   学   学   报                                 第 41 卷

            3    结论                                                temperatures[J].  Nature  Communications,  2016,  7:  10602.  doi:  10.
                                                                   1038/ncomms10602.
                a. 采用真空感应熔炼技术制备了CoCrFeMoNiC              x     [  9  ]  Cantor B, Chang I T H, Knight P, et al. Microstructural development
            (x=0、1、2、3、4和5)系列中熵合金,该合金主要由BCC                        in  equiatomic  multicomponent  alloys[J].  Materials  Science  and
            相组成且组织为等轴晶. C的添加促进了条状碳化物                               Engineering A, 2004, 375-377: 213–218. doi: 10.1016/j.msea.2003.
                                                                   10.257.
            的生成,有利于改善合金的强度和硬度等力学性能.
                                                               [10]  Otto F, Dlouhý A, Somsen C, et al. The influences of temperature
                b. 随着C含量的增加,C原子的间隙固溶强化和
                                                                   and microstructure on the tensile properties of a CoCrFeMnNi high-
            碳化物第二相强化的共同作用使CoCrFeMoNiC 中熵                           entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743–5755. doi: 10.
                                                     x
            合金的力学性能得以明显改善. 其中,C 合金的洛氏                              1016/j.actamat.2013.06.018.
                                               5
            硬度、屈服强度、压缩强度、断裂应变和断裂韧性分别为                          [11]  Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMo x  high entropy
                                                        0.5
            34.1 HRC、997 MPa、208 8 MPa、43.2%和41.2 MPa·m ,          alloys strengthened by hard intermetallic phases[J]. Acta Materialia,
            具有良好的综合力学性能.                                           2016, 116: 332–342. doi: 10.1016/j.actamat.2016.06.063.
                                                               [12]  Xin Benbin, Zhang Aijun, Han Jiesheng, et al. Tuning composition
                c. CoCrFeMoNiC 中熵合金的磨损率随C含量的
                               x
                                                                   and  microstructure  by  doping  Ti  and  C  for  enhancing  mechanical
            增加而降低,耐磨性得到显著改善. 当C质量分数为
                                                                   property  and  wear  resistance  of  Al 0.2 Co 1.5 CrFeNi 1.5 Ti 0.5   high
                                               3
                                          −5
            5%时,该合金的磨损率为0.95×10  mm /(N·m),表现
                                                                   entropy  alloy  matrix  composites[J].  Journal  of  Alloys  and
            出良好的耐磨性. CoCrFeMoNiC 中熵合金在室温下                          Compounds,  2020,  836:  155273.  doi:  10.1016/j.jallcom.2020.
                                         x
            的磨损机制主要为磨粒磨损,同时存在塑性变形和疲                                155273.
            劳磨损.                                               [13]  Wang  Zhangwei,  Baker  I,  Cai  Zhonghou,  et  al.  The  effect  of
                                                                   interstitial  carbon  on  the  mechanical  properties  and  dislocation
            参 考 文 献
                                                                   substructure  evolution  in  Fe 40.4 Ni 11.3 Mn 34.8 Al 7.5 Cr 6   high  entropy
            [  1  ]  Zhang  Yong,  Zuo  Ting  ting,  Tang  Zhi,  et  al.  Microstructures  and  alloys[J].  Acta  Materialia,  2016,  120:  228–239.  doi:  10.1016/j.
                 properties of high-entropy alloys[J]. Progress in Materials Science,  actamat.2016.08.072.
                 2014, 61: 1–93. doi: 10.1016/j.pmatsci.2013.10.001.  [14]  Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on
            [  2  ]  Miracle D B, Senkov O N. A critical review of high entropy alloys  stability  of  fcc  or  bcc  phase  in  high  entropy  alloys[J].  Journal  of
                 and related concepts[J]. Acta Materialia, 2017, 122: 448–511. doi:  Applied physics, 2011, 109(10): 103505. doi: 10.1063/1.3587228.
                 10.1016/j.actamat.2016.08.081.                [15]  Hu Conghui, Zhang Jianlei, Zhang Yunhu, et al. Phase modulation
            [  3  ]  Yeh  J  W,  Chen  S  K,  Lin  S  J,  et  al.  Nanostructured  high-entropy  of  BCC-structured  Fe 35 Mn 25 Al 15 Cr 10 Ni 15   high-entropy  alloy  by
                 alloys with multiple principal elements: novel alloy design concepts  interstitial  carbon[J].  Journal  of  Iron  and  Steel  Research
                 and  outcomes[J].  Advanced  Engineering  Materials,  2004,  6(5):  International, 2018, 25(8): 877–882. doi: 10.1007/s42243-018-0125-0.
                 299–303. doi: 10.1002/adem.200300567.         [16]  Kwon H, Moon J, Bae J W, et al. Precipitation-driven metastability
            [  4  ]  Jain  H,  Shadangi  Y,  Shivam  V,  et  al.  Phase  evolution  and  engineering  of  carbon-doped  CoCrFeNiMo  medium-entropy  alloys
                 mechanical properties of non-equiatomic Fe-Mn-Ni-Cr-Al-Si-C high  at cryogenic temperature[J]. Scripta Materialia, 2020, 188: 140–145.
                 entropy  steel[J].  Journal  of  Alloys  and  Compounds,  2020,  834:  doi: 10.1016/j.scriptamat.2020.07.023.
                 155013. doi: 10.1016/j.jallcom.2020.155013.   [17]  Zhou J H, Shen Y F, Hong Y Y, et al. Strengthening a fine-grained
            [  5  ]  Lu Xiaochong, Zhao Jianfeng, Yu Chao, et al. Cyclic plasticity of an  low activation martensitic steel by nanosized carbides[J]. Materials
                 interstitial  high-entropy  alloy:  experiments,  crystal  plasticity  Science and Engineering:A, 2020, 769: 138471. doi: 10.1016/j.msea.
                 modeling, and simulations[J]. Journal of the Mechanics and Physics  2019.138471.
                 of Solids, 2020, 142: 103971. doi: 10.1016/j.jmps.2020.103971.  [18]  Kameda  J,  McMahon  C  J.  The  effects  of  Sb,  Sn,  and  P  on  the
            [  6  ]  Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of  strength  of  grain  boundaries  in  a  Ni-Cr  Steel[J].  Metallurgical
                 Nb 25 Mo 25 Ta 25 W 25   and  V 20 Nb 20 Mo 20 Ta 20 W 20   refractory  high  Transactions A, 1981, 12(1): 31–37. doi: 10.1007/BF02648505.
                 entropy  alloys[J].  Intermetallics,  2011,  19(5):  698–706.  doi:  10.  [19]  Mi  C  W,  Buttry  D  A,  Sharma  P,  et  al.  Atomistic  insights  into
                 1016/j.intermet.2011.01.004.                      dislocation-based  mechanisms  of  void  growth  and  coalescence[J].
            [  7  ]  Guo  S.  Phase  selection  rules  for  cast  high  entropy  alloys:  an  Journal  of  the  Mechanics  and  Physics  of  Solids,  2011,  59:
                 overview[J].  Materials  Science  and  Technology,  2015,  31(10):  1858–1871. doi: 10.1016/j.jmps.2011.05.008.
                 1223–1230. doi: 10.1179/1743284715Y.0000000018.  [20]  Zhang Aijun, Han Jiesheng, Su Bo, et al. Tribological properties of
            [  8  ]  Gludovatz  B,  Hohenwarter  A,  Thurston  K  V  S,  et  al.  Exceptional  AlCoCrFeNi  high  entropy  alloy  at  elevated  temperature[J].
                 damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic  Tribology, 2017, 37(6): 776–783 (in Chinese) [张爱军, 韩杰胜, 苏
   132   133   134   135   136   137   138   139   140   141   142