Page 127 - 《摩擦学学报》2021年第6期
P. 127
912 摩 擦 学 学 报 第 41 卷
of a rail steel[J]. Wear, 2006, 206(4-5): 523–537. doi: 10.1016/j. [11] Wang Shuaishuai. Research on contact fatigue performance and
wear.2005.03.005. microstructure evolution of D2 wheel steel[D]. Dalian: Dalian
[ 2 ] Ueda M, Uchino K, Kobayashi A. Effects of carbon content on wear Jiaotong University (in Chinese) [王帅帅. D2车轮钢接触疲劳性能
property in pearlitic steels[J]. Wear, 2002, 253(1-2): 107–113. doi: 与组织演变的研究[D]. 大连: 大连交通大学, 2017].
10.1016/S0043-1648(02)00089-3. [12] Garnham J E, Davis C L. The role of deformed rail microstructure
[ 3 ] Yan Guochen, He Qingfu, Gao Yigang. Study of rolling contact on rolling contact fatigue initiation[J]. Wear, 2008, 265(9-10):
fatigue of wheels[J]. Railway Locomotive & CAR, 2002, 22(4): 1363–1372. doi: 10.1016/j.wear.2008.02.042.
17–20,1 (in Chinese) [阎国臣, 何庆复, 高义刚. 车轮滚动接触疲劳 [13] Zhang Dingquan. The effects of residual stresses on the fatigue
研究[J]. 铁道机车车辆, 2002, 22(4): 17–20,1]. doi: 10.3969/j.issn.
strength of metal[J]. Physical Testing and Chemical Analysis Part
1008-7842.2002.04.007.
One (Physics Section), 2002, 38(6): 231–235 (in Chinese) [张定铨.
[ 4 ] Zhou Guiyuan, He Chenggang, Wen Guang, et al. Fatigue damage
残余应力对金属疲劳强度的影响[J]. 理化检验(物理分册), 2002,
mechanism of railway wheels under lateral forces[J]. Tribology
38(6): 231–235].
International, 2015, 91: 160–169. doi: 10.1016/j.triboint.
[14] Luo Qinghong, Li Chunzhi, Lou Yanzhi, et al. Grinding process
[ 5 ] Taraf M, Zahaf E H, Oussouaddi O, et al. Numerical analysis for
effect on surface modificative layer microstructure, property and
predicting the rolling contact fatigue crack initiation in a railway
fatigue behavior of carburized M50NiL steel[J]. Acta Metallurgica
wheel steel[J]. Tribology International, 2010, 43(3): 585–593. doi:
Sinica, 2012, 48(2): 194–198 (in Chinese) [罗庆洪, 李春志, 娄艳
10.1016/j.triboint.2009.09.007.
芝, 等. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及
[ 6 ] Liu Chunpeng, Zhao Xiujuan, Liu Pengtao, et al. Influence of slip
疲劳性能影响[J]. 金属学报, 2012, 48(2): 194–198].
ratio on worn-surface microstructure and fatigue wear behavior of
[15] Zhou Y, Peng J F, Luo Z P, et al. Phase and microstructural
D2 wheel steel[J]. Journal of Iron and Steel Research International,
evolution in white etching layer of a pearlitic steel during rolling-
2018, 25(12): 1278–1286. doi: 10.1007/s42243-018-0193-1.
sliding friction[J]. Wear, 2016, 362–363: 8–17. doi: 10.1016/j.wear.
[ 7 ] Zhang H W, Ohsaki S, Mitao S, et al. Microstructural investigation
2016.05.007.
of white etching layer on pearlite steel rail[J]. Materials Science and
[16] Sangid M D. The physics of fatigue crack initiation[J]. International
Engineering: A, 2006, 421(1-2): 191–199. doi: 10.1016/j.msea.2006.
Journal of Fatigue, 2013, 57: 58–72. doi: 10.1016/j.ijfatigue.2012.
01.033.
10.009.
[ 8 ] Eden H C, Garnham J E, Davis C L. Influential microstructural
[17] Minami A, Onuki A. Dislocation formation in two-phase alloys[J].
changes on rolling contact fatigue crack initiation in pearlitic rail
Physical Review B, 2004, 70(18): 184114. doi: 10.1103/physrevb.
steels[J]. Materials Science and Technology, 2005, 21(6): 623–629.
doi: 10.1179/174328405x43207. 70.184114.
[ 9 ] Gao Bo, Tan Zhunli, Liu Zinan, et al. Influence of non-uniform [18] Tanaka K, Mura T. A dislocation model for fatigue crack
microstructure on rolling contact fatigue behavior of high-speed initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97–103.
wheel steels[J]. Engineering Failure Analysis, 2019, 100: 485–491. doi: 10.1115/1.3157599.
doi: 10.1016/j.engfailanal.2019.03.002. [19] Kulkarni S M, Hahn G T, Rubin C A, et al. Elasto-plastic finite
[10] Li Qian, Guo Jun, Zhao Aimin. Effect of upper bainite on wear element analysis of repeated three-dimensional, elliptical rolling
behaviour of high-speed wheel steel[J]. Tribology Letters, 2019, contact with rail wheel properties[J]. Journal of Tribology, 1991,
67(4): 1–9. doi: 10.1007/s11249-019-1239-7. 113(3): 434–441. doi: 10.1115/1.2920643.