Page 229 - 《振动工程学报》2025年第9期
P. 229

第 9 期                  罗 帅,等:增稠剂对调谐液体阻尼器阻尼比与频率的影响研究                                        2159

              规律,探讨了多个参数对            TLD  性能提升的影响,主             [11]  LOVE  J  S, HASKETT  T  C.  Nonlinear  modelling  of  tuned
              要得到如下结论:                                              sloshing  dampers  with  large  internal  obstructions: damping
                                                                    and  frequency  effects[J].  Journal  of  Fluids  and  Structures,
                  (1) 增稠剂能够有效增加         TLD  系统的阻尼比,且
                                                                    2018,79:1-13.
              对频率几乎没有影响,因此增稠剂是一种提升                      TLD     [12]  黄鹏. 基于  CFD  的内置阻尼装置   TLD  振动特性参数化分
              性能的有效方法。但是部分增稠剂时效性不高,放                                析  [D]. 广州:广州大学, 2020.
              置  2  个月后,液体黏性降低明显,就本文选用的                  2  类       HUANG P. CFD-based parametric analysis on vibration char-
                                                                    acteristics  of  TLD  system  with  internal  damping  devices[D].
              增稠剂而言,羧甲基纤维素钠性能明显优于海藻酸                                Guangzhou:Guangzhou University,2020.
              钠,因此选用合适的增稠剂尤为重要。                                 [13]  CASE K M,PARKINSON W C. Damping of surface waves
                  (2)TLD  水深比变化,对     TLD  频率和阻尼比影响较                in  an  incompressible  liquid[J].  Journal  of  Fluid  Mechanics,
                                                                    1957,2(2):172-184.
              小;外激励的幅值和频率对            TLD  频率和阻尼比均影响
                                                                [14]  SCARSI G. Natural frequencies of viscous liquids in rectangu-
              较小,但对液体晃动波高影响显著;随着水箱尺寸增加,                             lar tanks[J]. Meccanica,1971,6(4):223-232.
              TLD  阻尼比降低,在尺寸相当小时,阻尼比增加明显。                       [15]  ZOU C F,WANG D Y,CAI Z H. Effects of boundary layer
                  (3) 不同类型的    TLD  系统受参数变化影响趋势一                    and liquid viscosity and compressible air on sloshing charac-
                                                                    teristics[J].  International  Journal  of  Naval  Architecture  and
              致。随着增稠剂浓度提高,4            种类型    TLD  阻尼比均有
                                                                    Ocean Engineering,2015,7(4):670-690.
              明显提升,但是提升幅度不同,圆环形和                U  形更为明显;       [16]  AN Y H,WANG Z Z,OU G,et al. Vibration mitigation of
              随着水深比增加,矩形、圆形和圆环形               TLD  阻尼比频率            suspension bridge suspender cables using a ring-shaped tuned
                                                                    liquid  damper[J].  Journal  of  Bridge  Engineering, 2019,
              提高,阻尼比降低,而        U  形  TLD  频率下降,阻尼比提高。
                                                                    24(4):04019020.
                                                                [17]  ABRAMSON H N. The Dynamic behavior of liquid inmoving
              参考文献:                                                 containers:NASA SP-106[R]. 1966.
                                                                [18]  MIEDA  T, ISHIDA  K, JITU  K, et  al.  An  experimental
                                                                    study  of  viscous  damping  in  sloshing  mode  of  cylindrical
              [1]  TAIT  M  J, EL  DAMATTY  A  A, ISYUMOV  N, et  al.
                                                                    tanks[C]//SMiRT 12,1993.
                  Numerical  flow  models  to  simulate  tuned  liquid  dampers  [19]  BULIAN G,SOUTO-IGLESIAS A,DELORME L,et al.
                  (TLD) with slat screens[J]. Journal of Fluids and Structures,
                                                                    Smoothed  particle  hydrodynamics  ( SPH)   simulation  of  a
                  2005,20(8):1007-1023.
                                                                    tuned  liquid  damper[J].  Journal  of  Hydraulic  Research,
              [2]  TAIT  M  J, ISYUMOV  N, EL  DAMATTY  A  A.  Perfor-
                                                                    2010,48(Sup1):28-39.
                  mance  of  tuned  liquid  dampers[J].  Journal  of  Engineering
                                                                [20]  PIRNER M,URUSHADZE S. Liquid damper for suppress-
                  Mechanics,2008,134(5):417-427.
                                                                    ing horizontal and vertical motions:parametric study[J]. Jour-
              [3]  TAIT M J,EL DAMATTY A A,ISYUMOV N. An investi-
                                                                    nal  of  Wind  Engineering  and  Industrial  Aerodynamics,
                  gation of tuned liquid dampers equipped with damping screens
                                                                    2007,95(9-11):1329-1349.
                  under  2D  excitation[J].  Earthquake  Engineering  &  Structural  [21]  李海宁. 海藻酸钠浓溶液的性能研究  [D]. 青岛:青岛大
                  Dynamics,2005,34(7):719-735.                      学,2012.
              [4]  ZHANG L F,ZHANG L L,XIE Z N,et al. Experimental  LI  Haining.  Study  on  properties  of  sodium  alginate  concen-
                  study  on  vibration  reduction  performance  of  tuned  liquid  trated  solution[D].  Qiangdao: Qingdao  University,  2012.
                  dampers with damping screens[J]. Journal of Vibration Engi-  [22]  郝超月. 羧甲基纤维素钠基水凝胶的制备及其应用  [D]. 天
                  neering,2022,35(3):674-680.                       津: 天津大学, 2018.
              [5]  CASSOLATO R M. The performance of a tuned liquid damper  HAO  C  Y.  Preparation  and  application  of  sodium
                  equipped  with  inclined  and  oscillating  damping  screens[D].  carboxymethylcellulose  based  hydrogel[D].  Tianjin: Tianjin
                  Hamilton:McMaster University,2007.                University,2018.
              [6]  YU L T,XUE M,ZHENG J H. Experimental study of verti-  [23]  柳 国 军.  一 种 建 筑 消 防 用 环 保 灭 火 剂 的 制 备 方 法 :
                  cal slat screens effects on reducing shallow water sloshing in a  CN106110559A[P]. 2016-11-16.
                  tank  under  horizontal  excitation  with  a  wide  frequency  [24]  蔡娟. 具有优异防火隔热性能的钢结构防火涂料及其制备
                  range[J]. Ocean Engineering,2019,173:131-141.     方法:CN111040522A[P]. 2020-04-21.
              [7]  GOUDARZI  M  A, SABBAGH-YAZDI  S  R, MARX  W.  [25]  BAUER  H  F.  Fluid  oscillations  in  the  containers  of  a  space
                  Investigation of sloshing damping in baffled rectangular tanks  vehicle  and  their  influence  on  stability[R].  Marshall  Flight
                  subjected to the dynamic excitation[J]. Bulletin of Earthquake  Center,1964.
                  Engineering,2010,8(4):1055-1072.              [26]  孙北松. 基于吸热塔气弹模型的微型        TLD  风振控制试验研
              [8]  ZHONG W K. Research on the mechanical property of TLD  究  [D]. 长沙:湖南大学, 2020.
                  with  internal  baffles  and  optimization  design  of  vibration  SUN B S. Experimental investigation on the mitigtion of wind-
                  control for wind-induced tall buildings with TLD system[D].  induced vibration of solar tower by tiny TLD based on aeroe-
                  Guangzhou:Guangzhou University,2022.              lastic test model[D]. Changsha:Hunan University,2020.
              [9]  JUNG J H,YOON H S,LEE C Y,et al. Effect of the verti-
                  cal baffle height on the liquid sloshing in a three-dimensional
                                                                第一作者:罗 帅(1998—),男,硕士研究生。
                  rectangular tank[J]. Ocean Engineering,2012,44:79-89.
                                                                        E-mail:13684133002@163.com
              [10]  EVANS  D  V, MCIVER  P.  Resonant  frequencies  in  a
                  container  with  a  vertical  baffle[J].  Journal  of  Fluid  Mechan-  通信作者:李寿英(1977—),男,博士,教授,博士生导师。
                  ics,1987,175:295-307.                                 E-mail:shyli@hnu.edu.cn
   224   225   226   227   228   229   230   231   232   233   234