Page 161 - 卫星导航2021年第1-2合期
P. 161
Wang et al. Satell Navig (2021) 2:9 Page 11 of 11
Gu, S. F., Shi, C., Lou, Y. D., & Liu, J. N. (2015a). Ionospheric efects in uncalibrated Melbourne, W.G. (1985). The case for ranging in GPS-based geodetic systems.
phase delay estimation and ambiguity-fxed PPP based on raw observ- In Proceedings of the First international symposium on precise positioning
able model. Journal of Geodesy, 89(5), 447–457. https ://doi.org/10.1007/ with the Global Positioning System (pp. 373–386). Rockville: U.S. Dept. of
s0019 0-015-0789-1. Commerce.
Hu, J. H., Zhang, X. H., Li, P., Ma, F. J., & Pan, L. (2020). Multi-GNSS fractional cycle Shi, J.B. (2012). Precise point positioning integer ambiguity resolution with decou-
bias products generation for GNSS ambiguity-fxed PPP at Wuhan Univer- pled clocks. Ph.D. thesis. Calgary: University of Calgary.
sity. GPS Solutions, 24(1), 15. https ://doi.org/10.1007/s1029 1-019-0929-9. Shi, J. B., & Gao, Y. (2014). A comparison of three PPP integer ambiguity resolu-
Jiao, W. H., Ding, Q., Li, J. W., Lu, X. C., Feng, L. P., Ma, J. Q., & Chen, G. (2012). tion methods. GPS Solutions, 18(4), 519–528. https ://doi.org/10.1007/
Monitoring and assessment of GNSS Open Services (in Chinese). Sci- s1029 1-013-0348-2.
ence Sinica Physics, Mechanics & Astronomy, 41(5), 521–527. https ://doi. Teunissen, P. J. G., & Khodabandeh, A. (2015). Review and principles of PPP-RTK
org/10.1360/13201 1-359. methods. Journal of Geodesy, 89(3), 217–240. https ://doi.org/10.1007/
Laurichesse, D. (2011). The CNES Real-time PPP with undiferenced integer s0019 0-014-0771-3.
ambiguity resolution demonstrator. In Proceedings of the 24th interna- Wang, J., Huang, G. W., Yang, Y. X., Zhang, Q., Gao, Y., & Xiao, G. R. (2019). FCB
tional technical meeting of the satellite division of the institute of navigation estimation with three diferent PPP models: equivalence analysis and
(pp. 654–662). Portland: ION. experiment tests. GPS Solutions, 23(4), 93. https ://doi.org/10.1007/s1029
Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., & Cerri, L. (2009). Integer 1-019-0887-2.
ambiguity resolution on undiferenced GPS phase measurements and its Wang, J., Huang, G. W., Zhang, Q., Gao, Y., Gao, Y. T., & Luo, Y. R. (2020). GPS/
application to PPP and satellite precise orbit determination. Navigation, BDS-2/Galileo precise point positioning ambiguity resolution based
56(2), 135–149. https ://doi.org/10.1002/j.2161-4296.2009.tb017 50.x. on the uncombined model. Remote Sensing, 12(11), 1853. https ://doi.
Li, P., & Zhang, X. H. (2015). Precise point positioning with partial ambiguity org/10.3390/rs121 11853 .
fxing. Sensors, 15(6), 13627–13643. https ://doi.org/10.3390/s1506 13627 . Wübbena, G. (1985). Software developments for geodetic positioning with
Li, P., Zhang, X. H., Ge, M. R., & Schuh, H. (2018). Three-frequency BDS precise GPS using TI 4100 code and carrier measurements. In Proceedings 1st
point positioning ambiguity resolution based on raw observables. international symposium on precise positioning with the Global Positioning
Journal of Geodesy, 92(12), 1357–1369. https ://doi.org/10.1007/s0019 System (pp. 403-412). Rockville, Maryland: U. S. Dept. of Commerce.
0-018-1125-3. Wübbena, G., Schmitz, M., & Bagge, A. (2005). PPP-RTK: precise point position-
Li, P., Zhang, X. H., Ren, X. D., Zuo, X., & Pan, Y. M. (2016). Generating GPS satel- ing using state-space representation in RTK networks. In Proceedings
lite fractional cycle bias for ambiguity-fxed precise point positioning. GPS of the 18th international technical meeting of the satellite division of the
Solutions, 20(4), 771–782. https ://doi.org/10.1007/s1029 1-015-0483-z. Institute of Navigation (pp. 13–16). Long Beach: ION.
Li, X. X., Ge, M. R., Zhang, H. P., & Wickert, J. (2013). A method for improving Xiao, G. R., Li, P., Gao, Y., & Heck, B. (2019). A unifed model for multi-frequency
uncalibrated phase delay estimation and ambiguity-fxing in real-time PPP ambiguity resolution and test results with galileo and Beidou
precise point positioning. Journal of Geodesy, 87(5), 405–416. https ://doi. triple-frequency observations. Remote Sensing, 11(2), 116. https ://doi.
org/10.1007/s0019 0-013-0611-x. org/10.3390/rs110 20116 .
Li, X. X., & Zhang, X. H. (2012). Improving the estimation of uncalibrated frac- Xiao, G. R., Sui, L. F., Heck, B., Zeng, T., & Tian, Y. (2018). Estimating satellite phase
tional phase ofsets for PPP ambiguity resolution. Journal of Navigation, fractional cycle biases based on Kalman flter. GPS Solutions, 22(3), 82.
65(3), 513–529. https ://doi.org/10.1017/S0373 46331 20001 12. https ://doi.org/10.1007/s1029 1-018-0749-3.
Li, X. X., Zhang, X. H., & Ge, M. R. (2011). Regional reference network aug- Zhang, B. C., Teunissen, P. J. G., & Odijk, D. (2011). A novel un-diferenced
mented precise point positioning for instantaneous ambiguity resolu- PPP-RTK concept. Journal of Navigation, 64(S1), S180–S191. https ://doi.
tion. Journal of Geodesy, 85(3), 151–158. https ://doi.org/10.1007/s0019 org/10.1017/S0373 46331 10003 61.
0-010-0424-0.
Lou, Y. D., Zheng, F., Gu, S. F., Wang, C., Guo, H. L., & Feng, Y. M. (2016). Multi- Publisher’s Note
GNSS precise point positioning with raw single-frequency and dual-
frequency measurement models. GPS Solutions, 20(4), 849–862. https :// Springer Nature remains neutral with regard to jurisdictional claims in pub-
doi.org/10.1007/s1029 1-015-0495-8. lished maps and institutional afliations.
Loyer, S., Perosanz, F., Mercier, F., Capdeville, H., & Marty, J.-C. (2012). Zero-difer-
ence GPS ambiguity resolution at CNES–CLS IGS Analysis Center. Journal
of Geodesy, 86(11), 991–1003. https ://doi.org/10.1007/s0019 0-012-0559-2.