Page 125 - 《武汉大学学报(信息科学版)》2025年第6期
P. 125

第 50 卷第 6 期              张玉春等:森林火灾燃烧蔓延预测模型及预报平台研究                                    1147


                    havior[J].  Journal of Temperate Forestry Research,   影响的实验研究[J].  火灾科学(中英文), 2024, 33
                    2022, 5(4): 55-60.                              (1): 10-17.
               [15]  王惠, 周汝良, 庄娇艳, 等 .  林火蔓延模型研究及                    DU Zhihao, LIU Naian, XIE Xiaodong, et al.  Ex‑
                    应用开发[J].  济南大学学报(自然科学版), 2008,                   perimental  Study  of  Slope  Effect  on  Canyon  Fire
                    22(3): 295-300.                                  Spread[J].   Fire  Safety  Science,  2024,  33(1):
                    WANG  Hui,  ZHOU  Ruliang,  ZHUANG  Jiaoyan,     10-17.
                    et al.  Research of Forest Fire Spread Models and the   [27]  吴荻, 刘乃安, 谢小冬, 等 .  坡度条件下湍流扩散
                    Development  of  Simulation  Module[J].   Journal  of   火焰形态的实验研究[J].  工程热物理学报, 2021,
                    University  of  Jinan (Science  and  Technology),   42(8): 2150-2154.
                    2008, 22(3): 295-300.                            WU Di, LIU Naian, XIE Xiaodong, et al.  Experi‑
               [16]  VAN WAGNER C E.  Conditions for the Start and   mental Study on the Turbulent Diffusion Flame Un‑
                    Spread  of  Crown  Fire[J].   Canadian  Journal  of   der  Slope  Conditions[J].   Journal  of  Engineering

                    Forest Research, 1977, 7(1): 23-34.              Thermophysics, 2021, 42(8): 2150-2154.
               [17]  VAN WAGNER C E.  Prediction of Crown Fire Be‑  [28]  GUO H W, KONG L Y, GAO Y J, et al.  Transi‑
                    havior  in  Two  Stands  of  Jack  Pine[J].   Canadian   tion from Surface Fire to Crown Fire and Effects of
                    Journal of Forest Research, 1993, 23(3): 442-449.  Crown  Height,  Moisture  Content  and  Tree  Flower
               [18]  ANDREWS P L.  BEHAVE: Fire Behavior Predic‑    [J].  Fire Technology, 2024, 60(2): 1403-1419.
                    tion and Fuel Modeling System—BURN Subsystem,   [29]  GUO  H  W,  XIANG  D,  KONG  L  Y,  et  al.
                    Part  1[M].   GTR-INT-194,  USDA  Forest  Ser‑   Upslope  Fire  Spread  and  Heat  Transfer  Mechanism
                    vice, 1986.                                      over  a  Pine  Needle  Fuel  Bed  with  Different  Slopes
               [19]  Finney  M  A.   FARSITE:  Fire  Area  Simulator-  and  Winds [J].   Applied  Thermal  Engineering,
                    Model  Development  and  Evaluation [EB/OL].     2023, 229: 120605.
                    FARSITE  Software  and  Users  Guide,  http://  [30]  GUO  H  W,  XIANG  D,  ZHANG  P  Y,  et  al.   Ef‑
                    www. farsite. org,2004.                          fects  of  Wind  on  Heat  Transfer  and  Spread  of  Dif‑
               [20]  PAPADOPOULOS  G  D,  PAVLIDOU  F  N.   A        ferent  Fire  Lines  Across  a  Pine  Needle  Fuel  Bed
                    Comparative  Review  on  Wildfire  Simulators[J].    [J].   Combustion  Science  and  Technology,  2025,
                    IEEE Systems Journal, 2011, 5(2): 233-243.       197(4): 782-802.
               [21]  CWFGM  Steering  Committee.   Prometheus  User   [31]  GUO  H  W,  YANG  Z  Y,  YE  Z  Q,  et  al.   Experi‑
                    Manual  V.   3. 01[J].   Canadian  Forest  Service,   mental  Analysis  on  the  Behaviors  of  a  Laboratory
                    2004.                                            Surface Fire Spreading Across a Firebreak with Dif‑
               [22]  LIU  N  A,  WU  J  M,  CHEN  H  X,  et  al.   Upslope   ferent Winds[J].  Forests, 2023, 14(12): 2455.
                    Spread of a Linear Flame Front over a Pine Needle   [32]  SINGH A V, GOLLNER M J.  Estimation of Local
                    Fuel Bed: The Role of Convection Cooling[J].  Pro‑  Mass  Burning  Rates  for  Steady  Laminar  Boundary
                    ceedings of the Combustion Institute, 2015, 35(3):   Layer Diffusion Flames[J].  Proceedings of the Com‑
                    2691-2698.                                       bustion Institute, 2015, 35(3): 2527-2534.
               [23]  YAN  W  D,  LIU  N  A,  ZHU  H,  et  al.   Effect  of   [33]  TANG W, MILLER C H, GOLLNER M J.  Local
                    Cross-Wind  on  Firebrand  Flame:  An  Experimental   Flame Attachment and Heat Fluxes in Wind-Driven
                    Study  and  Scaling  Analysis[J].   Proceedings  of  the   Line Fires[J].  Proceedings of the Combustion Insti‑

                    Combustion Institute, 2024, 40(1/2/3/4): 105621.  tute, 2017, 36(2): 3253-3261.
               [24]  吕云欢, 刘乃安, 谢小冬, 等 .  火前锋附壁的模拟               [34]  GOLLNER M J,林少润,黄鑫炎 . 防御空间:应对
                    实验研究[J].  火灾科学, 2020, 29(4): 207-213.            野火防控中的挑战[J]. 中国林业, 2020(5):4.
                    LÜ  Yunhuan,  LIU  Naian,  XIE  Xiaodong,  et  al.    Gollner M J, LIN Shaorun, HUANG Xinyan.  De‑
                    Experimental  Simulation  Study  on  Flame  Attach‑  fensive  Space:  Addressing  the  Challenges  in  Wild‑
                    ment in Fire Spread[J].  Fire Safety Science, 2020,   fire  Prevention  and  Control[J].   Forestry  of  China,
                    29(4): 207-213.                                  2020(5):4.
               [25]  XIE X D, LIU N A, RAPOSO J R, et al.  An Ex‑  [35]  SHEIKH  B.   Phoenix:  Development  and  Applica‑
                    perimental  and  Analytical  Investigation  of  Canyon   tion of a Bushfire Risk Management Tool[J].  Aus‑
                    Fire  Spread[J].   Combustion  and  Flame,  2020,   tralian  Journal  of  Emergency  Management,  2008,
                    212: 367-376.                                    23(4):47-54.
               [26]  杜治昊, 刘乃安, 谢小冬, 等 .  坡度对峡谷火蔓延               [36]  MANDEL  J,  BEEZLEY  J  D,  COEN  J  L,  et  al.
   120   121   122   123   124   125   126   127   128   129   130