Page 216 - 《水产学报》2025年第7期
P. 216

曹正良,等                                                                 水产学报, 2025, 49(7): 079616

                    342-349.                                  [19]   徐立鸿, 黄薪, 刘世晶. 基于改进  LRCN  的鱼群摄食强度分类
              [13]   袁红春, 高子玥, 张天蛟. 基于改进的    XGBoost 模型预测南          模型  [J]. 农业机械学报, 2022, 53(10): 236-241.
                    太平洋长鳍金枪鱼资源丰度       [J]. 海洋湖沼通报, 2022, 44(2):    Xu L H, Huang X, Liu S J. Recognition of fish feeding intens-
                    112-120.                                        ity  based  on  improved  LRCN[J].  Transactions  of  the  Chinese
                    Yuan  H  C,  Gao  Z  Y,  Zhang  T  J.  Prediction  of  albacore  tuna  Society for Agricultural Machinery, 2022, 53(10): 236-241 (in
                    abundance  in  south  Pacific  based  on  improved  XGBoost  Chinese).
                    model[J].  Transactions  of  Oceanology  and  Limnology,  2022,
                                                              [20]   Althubiti S A, Alenezi F, Shitharth S, et al. Circuit manufactur-
                    44(2): 112-120 (in Chinese).
                                                                    ing defect  detection  using  VGG16  convolutional  neural   net-
              [14]   袁红春, 陈骢昊. 基于融合深度学习模型的长鳍金枪鱼渔情
                                                                    works[J].  Wireless  Communications  and  Mobile  Computing,
                    预测研究  [J]. 渔业现代化, 2019, 46(5): 74-81.
                                                                    2022, 2022(1): 1070405.
                    Yuan H C, Chen C H. Prediction of Thunnus alalunga fishery
                                                              [21]   Aravind K R, Raja P. Disease classification in eggplant using
                    based on fusion deep learning model[J]. Fishery Modernization,
                                                                    pre-trained  VGG16  and  MSVM[J].  Scientific  Reports,  2020,
                    2019, 46(5): 74-81 (in Chinese).
                                                                    10(1): 2322.
              [15]   王印庚, 于永翔, 蔡欣欣, 等. 基于  Deep Forest 算法的对虾急
                                                              [22]   Theckedath  D,  Sedamkar  R  R.  Detecting  affect  states  using
                    性肝胰腺坏死病    (AHPND) 预警数学模型构建   [J]. 渔业科学
                                                                    VGG16,  ResNet50  and  SE-ResNet50  networks[J].  SN  Com-
                    进展, 2024, 45(3): 171-181.
                                                                    puter Science, 2020, 1(2): 79.
                    Wang Y G, Yu Y X, Cai X X, et al. Construction of an early
                                                              [23]   林朗, 王让定, 严迪群, 等. 基于逆梅尔对数频谱系数的回放
                    warning  mathematical  model  for  Litopenaeus  vannamei
                                                                    语音检测算法   [J]. 电信科学, 2018, 34(5): 90-98.
                    AHPND  based  on  the  deep  forest  algorithm[J].  Progress  in
                                                                    Lin L, Wang R D, Yan D Q, et al. A playback speech detection
                    Fishery Sciences, 2024, 45(3): 171-181 (in Chinese).
                                                                    algorithm based on log inverse Mel-frequency spectral coeffi-
              [16]   杨雨欣, 于红, 杨宗轶, 等. 基于  Mel 声谱图与改进  SERes-
                                                                    cient[J].  Telecommunications  Science,  2018,  34(5):  90-98  (in
                    Net 的鱼类行为识别  [J]. 渔业现代化, 2024, 51(1): 56-63.
                                                                    Chinese).
                    Yang Y X, Yu H, Yang Z Y, et al. Fish behavior recognition
                                                              [24]   杨真真, 匡楠, 范露, 等. 基于卷积神经网络的图像分类算法
                    based on Mel spectrogram and improved SEResNet[J]. Fishery
                                                                    综述  [J]. 信号处理, 2018, 34(12): 1474-1489.
                    Modernization, 2024, 51(1): 56-63 (in Chinese).
                                                                    Yang Z Z, Kuang N, Fan L, et al. Review of image classifica-
              [17]   袁培森, 宋进, 徐焕良. 基于残差网络和小样本学习的鱼图像
                                                                    tion algorithms based on convolutional neural networks[J]. Jour-
                    识别  [J]. 农业机械学报, 2022, 53(2): 282-290.
                                                                    nal of Signal Processing, 2018, 34(12): 1474-1489 (in Chinese).
                    Yuan P S, Song J, Xu H L. Fish image recognition based on
                                                              [25]   Thakkar V, Tewary S, Chakraborty C. Batch Normalization in
                    residual network and few-shot learning[J]. Transactions of the
                                                                    convolutional  neural  networks   —  a  comparative  study  with
                    Chinese Society for Agricultural Machinery, 2022, 53(2): 282-
                    290 (in Chinese).                               CIFAR-10 data[C]// IEEE. 2018 Fifth International Conference
              [18]   蔡卫明, 庞海通, 张一涛, 等. 基于卷积神经网络的养殖鱼类                on Emerging Applications of Information Technology (EAIT).
                    品种识别模型   [J]. 水产学报, 2022, 46(8): 1369-1376.     Kolkata, India: IEEE, 2018: 1-5.
                    Cai W M, Pang H T, Zhang Y T, et al. Recognition model of  [26]   Bronskill J, Gordon J, Requeima J, et al. Tasknorm: Rethink-
                    farmed fish species based on convolutional neural network[J].  ing  batch  normalization  for  meta-learning[C]// GRLB   Work-
                    Journal  of  Fisheries  of  China,  2022,  46(8):  1369-1376  (in  shop.  Proceedings  of  the  37th  International  Conference  on
                    Chinese).                                       Machine Learning, Vienna: PMLR, 2020: 1153-1164.














              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            10
   211   212   213   214   215   216   217   218   219   220   221