Page 22 - 《水产学报》2025年第6期
P. 22
梁贺君,等 水产学报, 2025, 49(6): 069302
between paddy fields and crab/fish farming wetlands in south- ics in different boreal lake types[J]. Biogeosciences, 2009, 6(2):
east China[D]. Nanjing: Nanjing Agricultural University, 2015 209-223.
(in Chinese). [34] Huttunen J T, Alm J, Liikanen A, et al. Fluxes of methane, car-
[22] 刘俊文, 刘晃, 庄保陆, 等. 淡水池塘养殖温室气体排放研究 bon dioxide and nitrous oxide in boreal lakes and potential
进展 [J]. 渔业现代化, 2019, 46(6): 14-21. anthropogenic effects on the aquatic greenhouse gas
Liu J W, Liu H, Zhuang B L, et al. Research progress on green- emissions[J]. Chemosphere, 2003, 52(3): 609-621.
house gas emission from freshwater pond aquaculture[J]. Fish- [35] Downing J A. Emerging global role of small lakes and ponds:
ery Modernization, 2019, 46(6): 14-21 (in Chinese). little things mean a lot[J]. Limnetica, 2010, 29(1): 9-24.
[23] Bhattacharyya P, Sinhababu D P, Roy K S, et al. Effect of fish [36] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide
species on methane and nitrous oxide emission in relation to (N 2 O): the dominant ozone-depleting substance emitted in the
soil C, N pools and enzymatic activities in rainfed shallow low- 21st century[J]. Science, 2009, 326(5949): 123-125.
land rice-fish farming system[J]. Agriculture, Ecosystems & [37] Chen J, Zhong P A, An R, et al. Risk analysis for real-time
Environment, 2013, 176: 53-62. flood control operation of a multi-reservoir system using a
[24] Penman J, Kruger D, Galbally I, et al. Good practice guidance dynamic Bayesian network[J]. Environmental Modelling &
and uncertainty management in national greenhouse gas invent- Software, 2019, 111: 409-420.
ories[R]. Institute for Global Environmental Strategies, Japan: [38] Liu L X, Xu M, Li R Q. Modeling temporal patterns of meth-
Intergovernmental Panel on Climate Change, 2000. ane effluxes using multiple regression and random forest in
[25] Yang M, Grace J, Geng X M, et al. Carbon dioxide emissions Poyang Lake, China[J]. Wetlands Ecology and Management,
from the littoral zone of a Chinese reservoir[J]. Water, 2017, 2018, 26(1): 103-117.
9(7): 539. [39] Bastviken D, Tranvik L J, Downing J A, et al. Freshwater meth-
[26] Liu S W, Hu Z Q, Wu S, et al. Methane and nitrous oxide emis- ane emissions offset the continental carbon sink[J]. Science,
sions reduced following conversion of rice paddies to inland 2011, 331(6013): 50-50.
crab–fish aquaculture in Southeast China[J]. Environmental [40] Wang H X, Zhang L, Yao X L, et al. Dissolved nitrous oxide
Science & Technology, 2016, 50(2): 633-642. and emission relating to denitrification across the Poyang Lake
[27] Rosentreter J A, Borges A V, Deemer B R, et al. Half of global aquatic continuum[J]. Journal of Environmental Sciences, 2017,
methane emissions come from highly variable aquatic ecosys- 52: 130-140.
tem sources[J]. Nature Geoscience, 2021, 14(4): 225-230. [41] Manan H, Zhong J M H, Kasan N A, et al. Carbon dioxide flux
[28] Huang Y Y, Ciais P, Goll D S, et al. The shift of phosphorus from intensive aquaculture shrimp farming applying biofloc
transfers in global fisheries and aquaculture[J]. Nature Commu- system of Setiu Terengganu, Malaysia[J]. Aquaculture, 2019,
nications, 2020, 11(1): 355. 509: 52-58.
[29] Robb D H F, MacLeod M, Hasan M R, et al. Greenhouse gas [42] 赵光辉, 杨平, 谭立山, 等. 闽江河口养虾塘养殖期和非养殖
emissions from aquaculture: a life cycle assessment of three 期 CO 2 通量变化特征 [J]. 环境科学研究, 2020, 33(4): 949-
Asian systems[R]. Rome: FAO, 2017. 957.
[30] Dong B G, Xi Y, Cui Y X, et al. Quantifying methane emis- Zhao G H, Yang P, Tan L S, et al. Temporal variation of car-
sions from aquaculture ponds in China[J]. Environmental Sci- bon dioxide flux between farming and non-farming stages in the
ence & Technology, 2023, 57(4): 1576-1583. land-based shrimp pond in the Min River Estuary[J]. Research
[31] Webb J R, Leavitt P R, Simpson G L, et al. Regulation of car- of Environmental Sciences, 2020, 33(4): 949-957 (in Chinese).
bon dioxide and methane in small agricultural reservoirs: optim- [43] 宋红丽, 刘兴土, 文波龙. 黄河三角洲养殖塘水-气界面 CO 2 、
izing potential for greenhouse gas uptake[J]. Biogeosciences, CH 4 和 N 2 O 通量特征 [J]. 生态环境学报, 2017, 26(9): 1554-
2019, 16(21): 4211-4227. 1561.
[32] Palma-Silva C, Marinho C C, Albertoni E F, et al. Methane Song H L, Liu X T, Wen B L. Greenhouse gases fluxes at water-
emissions in two small shallow neotropical lakes: the role of air interface of aquaculture ponds in the Yellow River
temperature and trophic level[J]. Atmospheric Environment, Estuary[J]. Ecology and Environmental Sciences, 2017, 26(9):
2013, 81: 373-379. 1554-1561 (in Chinese).
[33] Juutinen S, Rantakari M, Kortelainen P, et al. Methane dynam- [44] 高洁. 漂浮通量箱法和扩散模型法测定内陆水体 CH 4 和
中国水产学会主办 sponsored by China Society of Fisheries https://www.china-fishery.cn
11