Page 210 - 《水产学报》2025年第5期
P. 210

张士薇,等                                                                 水产学报, 2025, 49(5): 059117

                    2023, 25(4): 214-226 (in Chinese).              He Z P, Gong G R, Xiong Y, et al. A phenotypic measurement
              [34]   孔杰, 栾生, 谭建, 等. 对虾选择育种研究进展    [J]. 中国海洋         and weight prediction model of Pelteobagrus fulvidraco based
                    大学学报, 2020, 50(9): 81-97.                       on  computer  vision[J].  Acta  Hydrobiologica  Sinica,  2024,
                    Kong  J,  Luan  S,  Tan  J,  et  al.  Progress  of  study  on  penaeid  48(7): 1149-1158 (in Chinese).
                    shrimp selective breeding[J]. Periodical of Ocean University of  [41]   Redmon J, Divvala S, Girshick R, et al. You Only Look Once:
                    China, 2020, 50(9): 81-97 (in Chinese).         unified,  real-time  object  detection[C]//IEEE.  Proceedings  of
              [35]   Sun K, Xiao B, Liu D, et al. Deep high-resolution representa-  2016 IEEE Conference on Computer Vision and Pattern Recog-
                    tion learning for human pose estimation[C]//IEEE. Proceedings  nition. Las Vegas: IEEE, 2016: 779-788.
                    of 2019  IEEE/CVF  Conference  on  Computer  Vision  and   Pat-  [42]   宋自根, 张佳彬, 覃学标, 等. 一种基于  Mask-RCNN  图像分
                    tern Recognition. Long Beach: IEEE, 2019: 5693-5703.  割的头足类动物角质颚色素沉积量化方法    [J]. 渔业现代化,
              [36]   杨爱萍, 田鑫, 杨炳旺, 等. 基于多特征融合的单幅水下图像                2021, 48(5): 70-78.
                    清晰化  [J]. 天津大学学报  (自然科学与工程技术版), 2018,           Song Z G, Zhang J B, Qin X B, et al. A Mask-RCNN based

                    51(10): 1031-1041.                              quantification method for pigmentation of cephalopod beaks[J].
                    Yang A P, Tian X, Yang B W, et al. Single underwater image  Fishery Modernization, 2021, 48(5): 70-78 (in Chinese).
                    sharpening based on multi-feature fusion[J]. Journal of Tianjin  [43]   He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for
                    University  (Science  and  Technology  Edition),  2018,  51(10):  image recognition[C]//IEEE.  Proceedings  of  2016  IEEE   Con-
                    1031-1041 (in Chinese).                         ference  on  Computer  Vision  and  Pattern  Recognition.  Las
              [37]   徐岩, 孙美双. 基于多特征融合的卷积神经网络图像去雾算                   Vegas: IEEE, 2016: 770-778.
                    法  [J]. 激光与光电子学进展, 2018, 55(3): 031012.   [44]   Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks
                    Xu Y, Sun M S. Convolution neural network image defogging  for object detection[C]//IEEE. Proceedings of 2017 IEEE Con-
                    based on multi-feature fusion[J]. Laser & Optoelectronics Pro-  ference on  Computer  Vision  and  Pattern  Recognition.   Hon-
                    gress, 2018, 55(3): 031012 (in Chinese).        olulu: IEEE, 2017: 2117-2125.
              [38]   Zhou H, Kim S H, Kim S C, et al. Size estimation for shrimp  [45]   He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//IEEE.
                    using  deep  learning  method[J].  Smart  Media  Journal,  2023,  Proceedings of  2017  IEEE  International  Conference  on   Com-
                    12(3): 112-119.                                 puter Vision. Venice, Italy: IEEE, 2017: 2961-2969.
              [39]   鲍镇宁, 于洋, 李富花. 基于  Faster R-CNN  的对虾生长性状  [46]   Prajapati S D, Ujjania N C. Study on length weight relationship
                    表型高通量测定技术的建立及应用        [J]. 水生生物学报, 2023,       and condition factor of whiteleg shrimp Litopenaeus vannamei
                    47(10): 1576-1584.                              (Boone, 1931) cultured in earthen pond, Khambhat (Gujarat)[J].
                    Bao Z N, Yu Y, Li F H. The establishment and application of a  International  Journal  of  Fauna  and  Biological  Studies,  2021,
                    fast  phenotypic  determination  technique  based  on  Faster  R-  8(1): 67-70.
                    CNN for growth traits in shrimp[J]. Acta Hydrobiologica Sin-  [47]   李玉虎, 张志怀, 宋芹芹, 等. 凡纳滨对虾新品系体形性状对
                    ica, 2023, 47(10): 1576-1584 (in Chinese).      其体质量的影响    [J]. 热带生物学报, 2014, 5(4): 307-311.
              [40]   何志鹏, 巩高瑞, 熊阳, 等. 基于计算机视觉的黄颡鱼表型特                Li Y H, Zhang Z H, Song Q Q, et al. Effect of growth traits on
                    征测量和体重预测模型研究       [J]. 水生生物学报, 2024, 48(7):    body  weight  of  the  new  breeds  of  Litopenaeus  vannamei[J].
                    1149-1158.                                      Journal of Tropical Biology, 2014, 5(4): 307-311 (in Chinese).

















              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            12
   205   206   207   208   209   210   211   212   213   214   215