Page 208 - 《水产学报》2025年第5期
P. 208

张士薇,等                                                                 水产学报, 2025, 49(5): 059117

              下几个核心部分构成:一套可以稳定采集高质                                  51.
              量图像的硬件装置;一个大样本生长表型关键                                  Cao B X, Kong J, Luo K, et al. Comparison of growth and sur-
              特 征 点 标 注 数 据 库 ; 基 于      HRNet 和   Mask R-          vival performance among selected population, imported popula-
              CNN  等深度学习算法的体尺性状和体表面积预                               tion  and  inbreeding  population  in  Litopenaeus  vannamei[J].
              测模型,以及体重的线性预测模型;集成硬件                                  Journal of Fisheries of China, 2015, 39(1): 42-51 (in Chinese).
              监测、图像处理、表型测定和数据存储等功能                            [  7  ]   Dai  P,  Li  D  Y,  Sui  J,  et  al.  Prediction  of  meat  yield  in  the
              的软件管理系统。与国内外其他研究相比,本                                  Pacific  whiteleg  shrimp  Penaeus  vannamei[J].  Aquaculture,
              系统在软硬件集成度、训练样本量、模型预测                                  2023, 577: 739914.
              能力和测量速率等方面具有优势,已在多家凡                            [  8  ]   金烨楠, 龚瑞, 刘向荣, 等. 3  种对虾的图像测量技术与人工测
              纳滨对虾育种单位中得到推广应用。                                      量方法的比较分析    [J]. 水产学报, 2018, 42(11): 1848-1854.

                                                                    Jin Y N, Gong R, Liu X R, et al. Comparative analysis of image
              参考文献     (References):                                measurement  technology  and  artificial  measurement  method

              [  1  ]   农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国                based  on  three  kinds  of  prawns[J].  Journal  of  Fisheries  of
                    水产学会. 中国渔业统计年鉴 2024[M]. 北京: 中国农业出版              China, 2018, 42(11): 1848-1854 (in Chinese).
                    社, 2024.                                  [  9  ]   罗艳. 基于机器视觉技术的对虾规格检测方法研究       [D]. 杭
                    Ministry  of  Agriculture  and  Rural  Affairs  of  the  People’s  州: 浙江大学, 2013.
                    Republic  of  China,  National  Fisheries  Technology  Extension  Luo Y. Detection of shrimp specification based on machine vis-
                    Center,  China  Society  of  Fisheries.  China  fishery  statistical  ion[D]. Hangzhou: Zhejiang University, 2013 (in Chinese).
                    yearbook 2024[M]. Beijing: China Agriculture Press, 2024 (in  [10]   林妙玲. 基于机器视觉的虾体位姿和特征点识别  [D]. 杭州:
                    Chinese).                                       浙江大学, 2007.
              [  2  ]   Zhang C, Guo C Y, Shu K H, et al. Comparative analysis of the  Lin M L. Study on identification of shrimp position and feature
                    growth  performance,  vitality,  body  chemical  composition  and  points based  on  machine  vision[D].  Hangzhou:  Zhejiang   Uni-
                    economic  efficiency  of  the  main  cultivated  strains  of  Pacific  versity, 2007 (in Chinese).
                    white  shrimp  (Litopenaeus  vannamei)  in  coastal  areas  of  [11]   Xi M Z, Rahman A, Nguyen C, et al. Smart headset, computer
                    China[J]. Aquaculture, 2024, 587: 740856.       vision and machine learning for efficient prawn farm manage-
              [  3  ]   刘永新, 邵长伟, 侯吉伦, 等. 中国水产育种研究现状与发展             ment[J]. Aquacultural Engineering, 2023, 102: 102339.
                    建议  [J]. 水产学报, 2023, 47(1): 019605.       [12]   龚瑞. 基于计算机视觉的鱼虾识别和形态参数测量          [D]. 厦
                    Liu Y X, Shao C W, Hou J L, et al. Research status and devel-  门: 厦门大学, 2018.
                    opment suggestion of China’s aquaculture breeding[J]. Journal  Gong R. Fish recognition and morphological parameters meas-
                    of Fisheries of China, 2023, 47(1): 019605 (in Chinese).  urement of prawn based on computer vision[D]. Xiamen: Xia-
              [  4  ]   徐孝栋. 凡纳滨对虾育种群体遗传参数评估     [D]. 大连: 大连        men University, 2018 (in Chinese).
                    海洋大学, 2014.                               [13]   秦品发. 基于深度学习的海洋水产育种体型参数测量         [D]. 厦
                    Xu  X  D.  Genetic  parameters  of  growth  and  survival  for  the  门: 厦门大学, 2021.
                    selective  breeding  population  in  Litopenaeus  vannamei[D].  Qin P F. Morphological parameters measurement based on deep
                    Dalian: Dalian Ocean University, 2014 (in Chinese).  learning  for  marine  fisheries  breeding  [D].  Xiamen:  Xiamen
              [  5  ]   王兴强, 马甡, 董双林. 凡纳滨对虾生物学及养殖生态学研究              University, 2021 (in Chinese).
                    进展  [J]. 海洋湖沼通报, 2004(4): 94-100.         [14]   Li X M, Liu R X, Wang Z, et al. Automatic penaeus monodon
                    Wang X Q, Ma S, Dong S L. Studies on the biology and cul-  larvae counting  via  equal  keypoint  regression  with   smart-
                    tural  ecology  of  Litopenaeus  vannamei:  a  review[J].  Transac-  phones[J]. Animals, 2023, 13(12): 2036.
                    tions  of  Oceanology  and  Limnology,  2004(4):  94-100  (in  [15]   Zeng J J, Feng M S, Deng Y C, et al. Deep learning to obtain
                    Chinese).                                       high-throughput morphological phenotypes and its genetic cor-
              [  6  ]   曹宝祥, 孔杰, 罗坤, 等. 凡纳滨对虾选育群体与近交群体、             relation  with  swimming  performance  in  juvenile  large  yellow
                    引进群体生长和存活性能比较       [J]. 水产学报, 2015, 39(1): 42-  croaker[J]. Aquaculture, 2024, 578: 740051.

              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            10
   203   204   205   206   207   208   209   210   211   212   213