Page 209 - 《水产学报》2025年第5期
P. 209

张士薇,等                                                                 水产学报, 2025, 49(5): 059117

              [16]   Li H R, Zheng R, Jiang W X, et al. Fish length estimation based  Shanghai  Jiaotong  University,  2009,  43(6):  931-934,939  (in
                    on stereo vision and keypoint detection[C]//IEEE. Proceedings  Chinese).
                    of 2024 36th Chinese Control and Decision Conference. Xi'an:  [26]   李婵, 万晓霞, 谢伟, 等. 照明光源对多光谱图像采集精度影
                    IEEE, 2024: 1747-1752.                          响的研究  [J]. 激光杂志, 2016, 37(12): 44-47.
              [17]   Yu C, Fan X, Hu Z H, et al. Segmentation and measurement  Li C, Wan X X, Xie W, et al. Effects of light source on multis-
                    scheme  for  fish  morphological  features  based  on  Mask  R-  pectral  image  acquisition  accuracy[J].  Laser  Journal,  2016,
                    CNN[J]. Information Processing in Agriculture, 2020, 7(4): 523-  37(12): 44-47 (in Chinese).
                    534.                                      [27]   龚聪, 徐杜. 光源强度变化对图像检测精度的影响及其解决
              [18]   Freitas M V, Lemos C G, Ariede R B, et al. High-throughput  方法  [J]. 科学技术与工程, 2014, 14(13): 236-239.
                    phenotyping  by  deep  learning  to  include  body  shape  in  the  Gong  C,  Xu  D.  Impact  and  solution  of  light  source  intensity
                    breeding  program  of  pacu  (Piaractus  mesopotamicus)[J].  changes to image measuring precision[J]. Science Technology
                    Aquaculture, 2023, 562: 738847.                 and Engineering, 2014, 14(13): 236-239 (in Chinese).
              [19]   王禹莎, 王家迎, 辛瑞, 等. 基于计算机视觉的大黄鱼体尺、          [28]   洪辰, 刘子豪, 汪许倩, 等. 基于形态学特征的对虾完整性识
                    体重性状表型测量装置开发和应用          [J]. 水产学报, 2023,       别方法构建   [J]. 食品安全质量检测学报, 2021, 12(22): 8666-

                    47(1): 019516.                                  8673.
                    Wang Y S, Wang J Y, Xin R, et al. Application of computer  Hong C, Liu Z H, Wang X Q, et al. Construction of complete-
                    vision in morphological and body weight measurements of large  ness  recognition  method  for  shrimp  (Litopenaeus  vannamei)
                    yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of  based  on  morphological  characteristics[J].  Journal  of  Food
                    China, 2023, 47(1): 019516 (in Chinese).        Safety and Quality, 2021, 12(22): 8666-8673 (in Chinese).
              [20]   Russell B C, Torralba A, Murphy K P, et al. LabelMe: a data-  [29]   Ghasemi-Varnamkhasti  M,  Goli  R,  Forina  M,  et  al.  Applica-
                    base and web-based tool for image annotation[J]. International  tion  of  image  analysis  combined  with  computational  expert
                    Journal of Computer Vision, 2008, 77(1): 157-173.  approaches  for  shrimp  freshness  evaluation[J].  International
              [21]   Rothschild C, Aflalo E D, Kedem I, et al. Computer vision sys-  Journal of Food Properties, 2016, 19(10): 2202-2222.
                    tem for counting crustacean larvae by detection[J]. Smart Agri-  [30]   高丽杰, 信文雪. 基于深度学习的光照不均匀图像识别系统
                    cultural Technology, 2023, 5: 100289.           设计  [J]. 信息与电脑, 2023, 35(9): 25-27.
              [22]   Solahudin M, Slamet W, Dwi A S. Vaname (Litopenaeus van-  Gao L J, Xin W X. Design of illumination uneven image recog-
                    namei)  shrimp  fry  counting  based  on  image  processing  nition system based on deep learning[J]. Information & Com-
                    method[J].  IOP  Conference  Series:  Earth  and  Environmental  puter, 2023, 35(9): 25-27 (in Chinese).
                    Science, 2018, 147: 012014.               [31]   Yu X J, Wang J P, Wen S T, et al. A deep learning based fea-
              [23]   甘露. 计算机视觉技术在虾蟹类养殖中的应用        [J]. 黑龙江水         ture extraction method on hyperspectral images for nondestruct-
                    产, 2024, 43(3): 334-336.                        ive  prediction  of  TVB-N  content  in  Pacific  white  shrimp
                    Gan  L.  Application  of  computer  vision  technology  in  shrimp  (Litopenaeus  vannamei)[J].  Biosystems  Engineering,  2019,
                    and  crab  culture[J].  Northern  Chinese  Fisheries,  2024,  43(3):  178: 244-255.
                    334-336 (in Chinese).                     [32]   唐扬, 孟小菲, 沈瑞福, 等. 凡纳滨对虾家系选育的研究与应
              [24]   李道亮, 刘畅. 人工智能在水产养殖中研究应用分析与未来                   用  [J]. 水产科学, 2018, 37(4): 555-563.
                    展望  [J]. 智慧农业  (中英文), 2020, 2(3): 1-20.         Tang Y, Meng X F, Shen R F, et al. Research and application of
                    Li D L, Liu C. Recent advances and future outlook for artificial  family  selective  breeding  in  culture  of  Pacific  white  shrimp
                    intelligence in aquaculture[J]. Smart Agriculture, 2020, 2(3): 1-  Litopenaeus vannamei[J]. Fisheries Science, 2018, 37(4): 555-
                    20 (in Chinese).                                563 (in Chinese).
              [25]   吴雯岑, 赵辉, 刘伟文, 等. 精密视觉测量中照明对图像质量          [33]   陈松林, 徐文腾, 卢昇, 等. 水产育种生物技术发展战略研究
                    的影响  [J]. 上海交通大学学报, 2009, 43(6): 931-934,939.   [J]. 中国工程科学, 2023, 25(4): 214-226.
                    Wu W C, Zhao H, Liu W W, et al. Effects of illumination on  Chen  S  L,  Xu  W  T,  Lu  S,  et  al.  Development  strategy  for
                    image  quality  in  precision  vision  measurement[J].  Journal  of  aquatic  breeding  biotechnology[J].  Strategic  Study  of  CAE,

              中国水产学会主办  sponsored by China Society of Fisheries                          https://www.china-fishery.cn
                                                            11
   204   205   206   207   208   209   210   211   212   213   214