Page 123 - 《水产学报》2023年第1期
P. 123

林志华,等                                                                 水产学报, 2023, 47(1): 019608

                   regression analysis between the Arrhenius break temper-  [68]  Bao Y B, Zeng Q F, Wang J, et al. Genomic insights into
                   atures (ABT) of heart rate and growth traits of Sinono-  the origin and evolution of molluscan red-bloodedness in
                   vacula constricta[J]. Oceanologia et Limnologia Sinica,  the  blood  clam  Tegillarca  granosa[J].  Molecular  Bio-
                   2021, 52(5): 1265-1272 (in Chinese).             logy and Evolution, 2021, 38(6): 2351-2365.
              [58]  董迎辉, 徐洪强, 莫天宝, 等. 一种蛏类硬壳新品种选              [69]  Wei  M,  Ge  H  X,  Shao  C  W,  et  al.  Chromosome-level
                   育方法: 中国, CN114982681A[P]. 2022-09-02.            clam  genome  helps  elucidate  the  molecular  basis  of
                   Dong Y H, Xu H Q, Mo T B, et al. A selection method  adaptation to a buried lifestyle[J]. iScience, 2020, 23(6):
                   for  hard-shelled  variety  of  razor  clams:  China,  101148.
                   CN114982681A[P]. 2022-09-02.               [70]  Song H, Guo X M, Sun L N, et al. The hard clam gen-
              [59]  包永波, 杨泽鑫, 章伟峰, 等. 一种泥蚶血红蛋白浓度                    ome  reveals  massive  expansion  and  diversification  of
                   高通量测定方法: 中国, CN113484256A[P]. 2021-10-           inhibitors  of  apoptosis  in  Bivalvia[J].  BMC  Biology,
                   08.                                              2021, 19(1): 15.
                   Bao Y B, Yang Z X, Zhang W F, et al. A high-through-  [71]  Bai C M, Xin L S, Rosani U, et al. Chromosomal-level
                   put method for detection of hemoglobin concentration of  assembly  of  the  blood  clam,  Scapharca  (Anadara)
                   blood clam Tegillarca granosa: China, CN113484256A  broughtonii,  using  long  sequence  reads  and  Hi-C[J].
                   [P]. 2021-10-08.                                 GigaScience, 2019, 8(7): giz067.
              [60]  Meuwissen T H E, Hayes B J, Goddard M E. Prediction  [72]  Ning  X  H,  Li  X,  Wang  J,  et  al.  Genome-wide  associ-
                   of total genetic value using genome-wide dense marker  ation study reveals E2F3 as the candidate gene for scal-
                   maps[J]. Genetics, 2001, 157(4): 1819-1829.      lop growth[J]. Aquaculture, 2019, 511: 734216.
              [61]  Zhang G F, Fang X D, Guo X M, et al. The oyster gen-  [73]  Peng W Z, Yu F, Wu Y Y, et al. Identification of growth-
                   ome  reveals  stress  adaptation  and  complexity  of  shell  related SNPs and genes in the genome of the Pacific aba-
                   formation. Nature, 2012, 490(7418): 49-54.       lone (Haliotis discus hannai) using GWAS[J]. Aquacul-
              [62]  Qi H G, Li L, Zhang G F. Construction of a chromosome-  ture, 2021, 541: 736820.
                   level  genome  and  variation  map  for  the  Pacific  oyster  [74]  He X, Li C Y, Qi H G, et al. A genome-wide association
                   Crassostrea  gigas[J].  Molecular  Ecology  Resources,  study to identify the genes associated with shell growth
                   2021, 21(5): 1670-1685.                          and  shape-related  traits  in  Crassostrea  gigas[J].
              [63]  Wang  S,  Zhang  J  B,  Jiao  W  Q,  et  al.  Scallop  genome  Aquaculture, 2021, 543: 736926.
                   provides  insights  into  evolution  of  bilaterian  karyotype  [75]  Meng  J,  Wang  W  X,  Shi  R  H,  et  al.  Identification  of
                   and development[J]. Nature Ecology & Evolution, 2017,  SNPs involved in Zn and Cu accumulation in the Pacific
                   1(5): 0120.                                      oyster (Crassostrea gigas) by genome-wide association
              [64]  Li Y L, Sun X Q, Hu X L, et al. Scallop genome reveals  analysis[J].  Ecotoxicology  and  Environmental  Safety,
                   molecular adaptations to semi-sessile life and neurotox-  2020, 192: 110208.
                   ins[J]. Nature Communications, 2017, 8(1): 1721.  [76]  Shi R H, Li C Y, Qi H G, et al. Construction of a high-
              [65]  Yan  X  W,  Nie  H  T,  Huo  Z  M,  et  al.  Clam  genome  resolution genetic map of Crassostrea gigas: QTL map-
                   sequence  clarifies  the  molecular  basis  of  its  benthic  ping  and  GWAS  applications  revealed  candidate  genes
                   adaptation  and  extraordinary  shell  color  diversity[J].  controlling nutritional traits[J]. Aquaculture, 2020, 527:
                   iScience, 2019, 19: 1225-1237.                   735427.
              [66]  Dong Y H, Zeng Q F, Ren J F, et al. The chromosome-  [77]  Wang S Y, Wang H Z, Zhao L, et al. Identification of
                   level genome  assembly  and  comprehensive   transcrip-  genes associated with carotenoids accumulation in scal-
                   tomes  of  the  razor  clam  (Sinonovacula  constricta)[J].  lop  (Patinopecten  yessoensis)[J].  Aquaculture,  2022,
                   Frontiers in Genetics, 2020, 11: 664.            550: 737850.
              [67]  Ran Z S, Li Z Z, Yan X J, et al. Chromosome-level gen-  [78]  Dou J Z, Li X, Fu Q, et al. Evaluation of the 2b-RAD
                   ome assembly of the razor clam Sinonovacula constricta  method for genomic selection in scallop breeding[J]. Sci-
                   (Lamarck,  1818)[J].  Molecular  Ecology  Resources,  entific Reports, 2016, 6: 19244.
                   2019, 19(6): 1647-1658.                    [79]  Wang Y F, Sun G D, Zeng Q F, et al. Predicting growth
              https://www.china-fishery.cn                           中国水产学会主办    sponsored by China Society of Fisheries
                                                            14
   118   119   120   121   122   123   124   125   126   127   128