Page 65 - 《软件学报》2026年第1期
P. 65

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2026,37(1):62−101 [doi: 10.13328/j.cnki.jos.007450] [CSTR: 32375.14.jos.007450]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                      *
                 面向智能软件系统的测试用例生成方法综述

                 吉    品,    冯    洋,    吴    朵,    刘    嘉,    赵志宏


                 (计算机软件新技术全国重点实验室         (南京大学), 江苏 南京 210046)
                 通信作者: 冯洋, E-mail: fengyang@nju.edu.cn; 刘嘉, Email: liujia@nju.edu.cn

                 摘 要: 随着深度学习等技术的快速发展以及计算机硬件、云计算等领域的重大突破, 日益成熟的人工智能技术
                 已经被应用于不同场景的软件系统中. 这类以人工智能模型为核心组件的软件系统, 统称为智能软件系统, 按照人
                 工智能技术的应用领域可分为图像处理应用、自然语言处理应用、语音处理应用等. 与传统软件系统不同, 人工
                 智能模型采用数据驱动的编程范式, 其中所有的决策逻辑均通过大规模数据集学习得到. 这种范式的转变导致传
                 统的基于代码的测试用例生成方法无法用于智能软件系统的质量评估. 因此, 近年来许多研究人员致力于面向智
                 能软件系统的测试方法研究, 包括结合智能软件系统的特点提出新的测试用例生成方法、测试用例评估方法等.
                 围绕面向智能软件系统的测试用例生成方法调研                  80  篇相关领域的文献, 将现有方法按照适配的系统类型进行分
                 类, 对面向图像处理应用、自然语言处理应用、语音处理应用、点云处理应用、多模态数据处理应用以及深度学
                 习模型的已有测试用例生成方法进行系统地梳理和总结. 最后, 对面向智能软件系统的测试用例生成方法的未来
                 工作进行展望, 以期为该领域的研究人员提供参考.
                 关键词: 人工智能软件系统; 软件测试; 测试用例生成; 深度学习
                 中图法分类号: TP311

                 中文引用格式: 吉品, 冯洋, 吴朵, 刘嘉, 赵志宏. 面向智能软件系统的测试用例生成方法综述. 软件学报, 2026, 37(1): 62–101. http://
                 www.jos.org.cn/1000-9825/7450.htm
                 英文引用格式: Ji P, Feng Y, Wu D, Liu J, Zhao ZH. Survey on Test Case Generation Methods for Intelligence Software Systems. Ruan
                 Jian Xue Bao/Journal of Software, 2026, 37(1): 62–101 (in Chinese). http://www.jos.org.cn/1000-9825/7450.htm

                 Survey on Test Case Generation Methods for Intelligence Software Systems

                 JI Pin, FENG Yang, WU Duo, LIU Jia, ZHAO Zhi-Hong
                 (State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210046, China)

                 Abstract:  With  the  rapid  development  of  technologies  such  as  deep  learning  and  significant  breakthroughs  in  areas  including  computer
                 hardware  and  cloud  computing,  increasingly  mature  artificial  intelligence  (AI)  technologies  are  being  applied  to  software  systems  across
                 various  fields.  Software  systems  that  incorporate  AI  models  as  core  components  are  collectively  referred  to  as  intelligence  software
                 systems.  Based  on  the  application  fields  of  AI  technologies,  these  systems  are  categorized  into  image  processing,  natural  language
                 processing,  speech  processing,  and  other  applications.  Unlike  traditional  software  systems,  AI  models  adopt  a  data-driven  programming
                 paradigm  in  which  all  decision  logic  is  learned  from  large-scale  datasets.  This  paradigm  shift  renders  traditional  code-based  test  case
                 generation  methods  ineffective  for  evaluating  the  quality  of  intelligence  software  systems.  As  a  result,  numerous  testing  methods  tailored
                 for  intelligence  software  systems  have  been  proposed  in  recent  years,  including  novel  approaches  for  test  case  generation  and  evaluation
                 that  address  the  unique  characteristics  of  such  systems.  This  study  reviews  80  relevant  publications,  classifies  existing  methods  according
                 to  the  types  of  systems  they  target,  and  systematically  summarizes  test  case  generation  methods  for  image  processing,  natural  language
                 processing, speech processing, point cloud processing, multimodal data processing, and deep learning models. Potential future directions for
                 test case generation in intelligence software systems are also discussed to provide a reference for researchers in this field.


                 *    基金项目: 国家自然科学基金  (62372225, 62272220)
                  收稿时间: 2023-11-07; 修改时间: 2025-01-17, 2025-03-25; 采用时间: 2025-04-23; jos 在线出版时间: 2025-09-03
                  CNKI 网络首发时间: 2025-09-04
   60   61   62   63   64   65   66   67   68   69   70