Page 62 - 《软件学报》2026年第1期
P. 62

郭涛 等: 智能合约可升级技术综述                                                                 59


                      Paradigms, tools, and systems. Patterns, 2021, 2(2): 100179. [doi: 10.1016/j.patter.2020.100179]
                 [67]   Kim B, Kim HJ, Lee J. First smart contract allowing cryptoasset recovery. KSII Trans. on Internet and Information Systems (TIIS),
                      2022, 16(3): 861–876. [doi: 10.3837/tiis.2022.03.006]
                 [68]   Dai HN, Zheng ZB, Zhang Y. Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 2019, 6(5): 8076–8094.
                      [doi: 10.1109/JIOT.2019.2920987]
                 [69]   Dorri A, Steger M, Kanhere SS, Jurdak R. Blockchain: A distributed solution to automotive security and privacy. IEEE Communications
                      Magazine, 2017, 55(12): 119–125. [doi: 10.1109/MCOM.2017.1700879]
                 [70]   Wang  ZJ,  Wang  TY,  Hu  H,  Gong  J,  Ren  X,  Xiao  QY.  Blockchain-based  framework  for  improving  supply  chain  traceability  and
                      information sharing in precast construction. Automation in Construction, 2020, 111: 103063. [doi: 10.1016/j.autcon.2019.103063]
                 [71]   Zhang TY, Feng TT, Cui ML. Smart contract design and process optimization of carbon trading based on blockchain: The case of China’s
                      electric power sector. Journal of Cleaner Production, 2023, 397: 136509. [doi: 10.1016/j.jclepro.2023.136509]
                 [72]   Leng JW, Sha WN, Lin ZS, Jing JB, Liu Q, Chen X. Blockchained smart contract pyramid-driven multi-agent autonomous process
                      control for resilient individualised manufacturing towards industry 5.0. Int’l Journal of Production Research, 2023, 61(13): 4302–4321.
                      [doi: 10.1080/00207543.2022.2089929]
                 [73]   Lu WS, Li X, Xue F, Zhao R, Wu LPF, Yeh AGO. Exploring smart construction objects as blockchain oracles in construction supply
                      chain management. Automation in Construction, 2021, 129: 103816. [doi: 10.1016/j.autcon.2021.103816]
                 [74]   Feng TY, Yu X, Chai YT, Liu Y. Smart contract model for complex reality transaction. Int’l Journal of Crowd Science, 2019, 3(2):
                      184–197. [doi: 10.1108/IJCS-03-2019-0010]
                 [75]   Nelaturu K, Mavridou A, Stachtiari E, Veneris A, Laszka A. Correct-by-design interacting smart contracts and a systematic approach for
                      verifying ERC20 and ERC721 contracts with VeriSolid. IEEE Trans. on Dependable and Secure Computing, 2023, 20(4): 3110–3127.
                      [doi: 10.1109/TDSC.2022.3200840]
                 [76]   Sookhak M, Jabbarpour MR, Safa NS, Yu FR. Blockchain and smart contract for access control in healthcare: A survey, issues and
                      challenges, and open issues. Journal of Network and Computer Applications, 2021, 178: 102950. [doi: 10.1016/j.jnca.2020.102950]
                 [77]   Gilani K, Ghaffari F, Bertin E, Crespi N. Self-sovereign identity management framework using smart contracts. In: Proc. of the 2022
                      IEEE/IFIP Network Operations and Management Symp. Budapest: IEEE, 2022. 1–7. [doi: 10.1109/NOMS54207.2022.9789831]
                 [78]   Chatterjee A, Pitroda Y, Parmar M. Dynamic role-based access control for decentralized applications. In: Proc. of the 3rd Int’l Conf. on
                      Blockchain. Honolulu: Springer, 2020. 185–197. [doi: 10.1007/978-3-030-59638-5_13]
                 [79]   Xue KP, Luo XY, Ma YJ, Li J, Liu JQ, Wei DSL. A distributed authentication scheme based on smart contract for roaming service in
                      mobile vehicular networks. IEEE Trans. on Vehicular Technology, 2022, 71(5): 5284–5297. [doi: 10.1109/TVT.2022.3148303]
                 [80]   Kim K, Ryu J, Lee H, Lee Y, Won D. Distributed and federated authentication schemes based on updatable smart contracts. Electronics,
                      2023, 12(5): 1217. [doi: 10.3390/electronics12051217]
                 [81]   Yang  YT,  Lin  TX,  Liu  PH,  Zeng  P,  Xiao  S.  UCBIS:  An  improved  consortium  blockchain  information  system  based  on  UBCCSP.
                      Blockchain: Research and Applications, 2022, 3(2): 100064. [doi: 10.1016/j.bcra.2022.100064]
                 [82]   Kumar R, Kumar P, Aloqaily M, Aljuhani A. Deep-learning-based blockchain for secure zero touch networks. IEEE Communications
                      Magazine, 2023, 61(2): 96–102. [doi: 10.1109/MCOM.001.2200294]
                 [83]   Chen JC, Xia X, Lo D, Grundy J, Yang XH. Maintenance-related concerns for post-deployed Ethereum smart contract development:
                      Issues, techniques, and future challenges. Empirical Software Engineering, 2021, 26(6): 117. [doi: 10.1007/s10664-021-10018-0]
                 [84]   Samreen  NF,  Alalfi  MH.  An  empirical  study  on  the  complexity,  security  and  maintainability  of  Ethereum-based  decentralized
                      applications (DApps). Blockchain: Research and Applications, 2023, 4(2): 100120. [doi: 10.1016/j.bcra.2022.100120]
                 [85]   Rodler M, Li WT, Karame GO, Davi L. EVMPatch: Timely and automated patching of Ethereum smart contracts. In: Proc. of the 30th
                      USENIX Security Symp. USENIX Association, 2021. 1289–1306.
                 [86]   Zhang YY, Ma SQ, Li JR, Li KL, Nepal S, Gu DW. SMARTSHIELD: Automatic smart contract protection made easy. In: Proc. of the
                      27th  IEEE  Int’l  Conf.  on  Software  Analysis,  Evolution  and  Reengineering  (SANER).  London:  IEEE,  2020.  23–34.  [doi: 10.1109/
                      SANER48275.2020.9054825]
                 [87]   Ferreira Torres C, Jonker H, State R. Elysium: Context-aware bytecode-level patching to automatically heal vulnerable smart contracts.
                      In: Proc. of the 25th Int’l Symp. on Research in Attacks, Intrusions and Defenses. Limassol: ACM, 2022. 115–128. [doi: 10.1145/
                      3545948.3545975]
                 [88]   Qin P, Tan WM, Guo JZ, Shen BQ. Intelligible description language contract (IDLC)—A novel smart contract model. Information
                      Systems Frontiers, 2024, 26(5): 1597–1614. [doi: 10.1007/s10796-021-10138-4]
                 [89]   Chen WM, Luo XP, Wang HY, Cui HM, Zheng SY, Liu XZ. EVMBT: A binary translation scheme for upgrading EVM smart contracts
   57   58   59   60   61   62   63   64   65   66   67