Page 62 - 《软件学报》2026年第1期
P. 62
郭涛 等: 智能合约可升级技术综述 59
Paradigms, tools, and systems. Patterns, 2021, 2(2): 100179. [doi: 10.1016/j.patter.2020.100179]
[67] Kim B, Kim HJ, Lee J. First smart contract allowing cryptoasset recovery. KSII Trans. on Internet and Information Systems (TIIS),
2022, 16(3): 861–876. [doi: 10.3837/tiis.2022.03.006]
[68] Dai HN, Zheng ZB, Zhang Y. Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 2019, 6(5): 8076–8094.
[doi: 10.1109/JIOT.2019.2920987]
[69] Dorri A, Steger M, Kanhere SS, Jurdak R. Blockchain: A distributed solution to automotive security and privacy. IEEE Communications
Magazine, 2017, 55(12): 119–125. [doi: 10.1109/MCOM.2017.1700879]
[70] Wang ZJ, Wang TY, Hu H, Gong J, Ren X, Xiao QY. Blockchain-based framework for improving supply chain traceability and
information sharing in precast construction. Automation in Construction, 2020, 111: 103063. [doi: 10.1016/j.autcon.2019.103063]
[71] Zhang TY, Feng TT, Cui ML. Smart contract design and process optimization of carbon trading based on blockchain: The case of China’s
electric power sector. Journal of Cleaner Production, 2023, 397: 136509. [doi: 10.1016/j.jclepro.2023.136509]
[72] Leng JW, Sha WN, Lin ZS, Jing JB, Liu Q, Chen X. Blockchained smart contract pyramid-driven multi-agent autonomous process
control for resilient individualised manufacturing towards industry 5.0. Int’l Journal of Production Research, 2023, 61(13): 4302–4321.
[doi: 10.1080/00207543.2022.2089929]
[73] Lu WS, Li X, Xue F, Zhao R, Wu LPF, Yeh AGO. Exploring smart construction objects as blockchain oracles in construction supply
chain management. Automation in Construction, 2021, 129: 103816. [doi: 10.1016/j.autcon.2021.103816]
[74] Feng TY, Yu X, Chai YT, Liu Y. Smart contract model for complex reality transaction. Int’l Journal of Crowd Science, 2019, 3(2):
184–197. [doi: 10.1108/IJCS-03-2019-0010]
[75] Nelaturu K, Mavridou A, Stachtiari E, Veneris A, Laszka A. Correct-by-design interacting smart contracts and a systematic approach for
verifying ERC20 and ERC721 contracts with VeriSolid. IEEE Trans. on Dependable and Secure Computing, 2023, 20(4): 3110–3127.
[doi: 10.1109/TDSC.2022.3200840]
[76] Sookhak M, Jabbarpour MR, Safa NS, Yu FR. Blockchain and smart contract for access control in healthcare: A survey, issues and
challenges, and open issues. Journal of Network and Computer Applications, 2021, 178: 102950. [doi: 10.1016/j.jnca.2020.102950]
[77] Gilani K, Ghaffari F, Bertin E, Crespi N. Self-sovereign identity management framework using smart contracts. In: Proc. of the 2022
IEEE/IFIP Network Operations and Management Symp. Budapest: IEEE, 2022. 1–7. [doi: 10.1109/NOMS54207.2022.9789831]
[78] Chatterjee A, Pitroda Y, Parmar M. Dynamic role-based access control for decentralized applications. In: Proc. of the 3rd Int’l Conf. on
Blockchain. Honolulu: Springer, 2020. 185–197. [doi: 10.1007/978-3-030-59638-5_13]
[79] Xue KP, Luo XY, Ma YJ, Li J, Liu JQ, Wei DSL. A distributed authentication scheme based on smart contract for roaming service in
mobile vehicular networks. IEEE Trans. on Vehicular Technology, 2022, 71(5): 5284–5297. [doi: 10.1109/TVT.2022.3148303]
[80] Kim K, Ryu J, Lee H, Lee Y, Won D. Distributed and federated authentication schemes based on updatable smart contracts. Electronics,
2023, 12(5): 1217. [doi: 10.3390/electronics12051217]
[81] Yang YT, Lin TX, Liu PH, Zeng P, Xiao S. UCBIS: An improved consortium blockchain information system based on UBCCSP.
Blockchain: Research and Applications, 2022, 3(2): 100064. [doi: 10.1016/j.bcra.2022.100064]
[82] Kumar R, Kumar P, Aloqaily M, Aljuhani A. Deep-learning-based blockchain for secure zero touch networks. IEEE Communications
Magazine, 2023, 61(2): 96–102. [doi: 10.1109/MCOM.001.2200294]
[83] Chen JC, Xia X, Lo D, Grundy J, Yang XH. Maintenance-related concerns for post-deployed Ethereum smart contract development:
Issues, techniques, and future challenges. Empirical Software Engineering, 2021, 26(6): 117. [doi: 10.1007/s10664-021-10018-0]
[84] Samreen NF, Alalfi MH. An empirical study on the complexity, security and maintainability of Ethereum-based decentralized
applications (DApps). Blockchain: Research and Applications, 2023, 4(2): 100120. [doi: 10.1016/j.bcra.2022.100120]
[85] Rodler M, Li WT, Karame GO, Davi L. EVMPatch: Timely and automated patching of Ethereum smart contracts. In: Proc. of the 30th
USENIX Security Symp. USENIX Association, 2021. 1289–1306.
[86] Zhang YY, Ma SQ, Li JR, Li KL, Nepal S, Gu DW. SMARTSHIELD: Automatic smart contract protection made easy. In: Proc. of the
27th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). London: IEEE, 2020. 23–34. [doi: 10.1109/
SANER48275.2020.9054825]
[87] Ferreira Torres C, Jonker H, State R. Elysium: Context-aware bytecode-level patching to automatically heal vulnerable smart contracts.
In: Proc. of the 25th Int’l Symp. on Research in Attacks, Intrusions and Defenses. Limassol: ACM, 2022. 115–128. [doi: 10.1145/
3545948.3545975]
[88] Qin P, Tan WM, Guo JZ, Shen BQ. Intelligible description language contract (IDLC)—A novel smart contract model. Information
Systems Frontiers, 2024, 26(5): 1597–1614. [doi: 10.1007/s10796-021-10138-4]
[89] Chen WM, Luo XP, Wang HY, Cui HM, Zheng SY, Liu XZ. EVMBT: A binary translation scheme for upgrading EVM smart contracts

