Page 61 - 《软件学报》2026年第1期
P. 61

58                                                         软件学报  2026  年第  37  卷第  1  期


                      https://github.com/mudgen/diamond-2-hardhat
                 [40]   Huang  Y,  Wu  XY,  Wang  QQ,  Qian  ZA,  Chen  XP,  Tang  MD,  Zheng  ZB.  The  sword  of  damocles:  Upgradeable  smart  contract  in
                      Ethereum. In: Proc. of the 32nd IEEE/ACM Int’l Conf. on Program Comprehension. Lisbon: ACM, 2024. 333–345. [doi: 10.1145/
                      3643916.3644426]
                 [41]   Bodell  WE  III,  Meisami  S,  Duan  Y.  Proxy  hunting:  Understanding  and  characterizing  proxy-based  upgradeable  smart  contracts  in
                      blockchains. In: Proc. of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 1829–1846.
                 [42]   Amri SAL, Aniello L, Sassone V. A review of upgradeable smart contract patterns based on open zeppelin technique. The Journal of the
                      British Blockchain Association, 2023, (6): 1–8. [doi: 10.31585/jbba-6-1-(3)2023]
                 [43]   Ebrahimi AM, Adams B, Oliva GA, Hassan AE. A large-scale exploratory study on the proxy pattern in Ethereum. Empirical Software
                      Engineering, 2024, 29(4): 81. [doi: 10.1007/s10664-024-10485-1]
                 [44]   Meisami S, Bodell WE III. A comprehensive survey of upgradeable smart contract patterns. arXiv:2304.03405, 2023.
                 [45]   Liu Y, Li S, Wu XH, Li Y, Chen ZY, Lo D. Demystifying the characteristics for smart contract upgrades. arXiv:2406.05712, 2024.
                 [46]   Salehi M, Clark J, Mannan M. Not so immutable: Upgradeability of smart contracts on Ethereum. In: Proc. of the 2022 Int’l Conf. on
                      Financial Cryptography and Data Security. Cham: Springer, 2022. 539–554. [doi: 10.1007/978-3-031-32415-4_33]
                 [47]   Li XF, Yang J, Chen JQ, Tang YZ, Gao X. Characterizing Ethereum upgradable smart contracts and their security implications. In: Proc.
                      of the 2024 ACM on Web Conf. Singapore: ACM, 2024. 1847–1858. [doi: 10.1145/3589334.3645640]
                 [48]   Yuan Y, Wang FY. Editable blockchain: Models, techniques and methods. Acta of Automatica Sinica, 2020, 46(5): 831–846 (in Chinese
                      with English abstract). [doi: 10.16383/j.aas.2020.y000002]
                 [49]   Trabelsi H, Zhang KW. Early detection for multiversion concurrency control conflicts in hyperledger fabric. arXiv:2301.06181, 2023.
                 [50]   Lehar A, Parlour CA, Zoican M. Liquidity fragmentation on decentralized exchanges. arXiv:2307.13772v5, 2023.
                 [51]   Gamma  E,  Helm  R,  Johnson  R,  Vlissides  J.  Design  patterns:  Abstraction  and  reuse  of  object-oriented  design.  In:  Proc.  of  the  7th
                      European Conf. on Object-oriented Programming. Kaiserslautern: Springer, 1993. 406–431. [doi: 10.1007/3-540-47910-4_21]
                 [52]   Murray P, Welch N, Messerman J. ERC-1167: Minimal proxy contract. Ethereum improvement proposals. 2018. https://eips.ethereum.
                      org/EIPS/eip-1167
                 [53]   MixBytes Team. Collisions of Solidity storage layouts. 2025. https://mixbytes.io/blog/collisions-solidity-storage-layouts
                 [54]   Palladino S, Giordano F, Croubois H. ERC-1967: Proxy storage slots. Ethereum improvement proposals. 2019. https://eips.ethereum.org/
                      EIPS/eip-1967
                 [55]   0age. Metamorphic: A metamorphic smart contract proxy pattern. 2019. https://github.com/0age/metamorphic
                 [56]   Mudge N. ERC-2535: Diamonds, multi-facet proxy. Ethereum improvement proposals. 2020. https://eips.ethereum.org/EIPS/eip-2535
                 [57]   van Vulpen P, Heijnen H, Mens S, Kroon T, Jansen S. Upgradeable diamond smart contracts in decentralized autonomous organizations.
                      Frontiers in Blockchain, 2024, 7: 1481914. [doi: 10.3389/fbloc.2024.1481914]
                 [58]   Stokes A, Dietrichs A, Ryan D, Swende MH, lightclient. EIP-4788: Beacon block root in the EVM. Ethereum improvement oroposals.
                      2022. https://eips.ethereum.org/EIPS/eip-4788
                 [59]   Klinger P, Nguyen L, Bodendorf F. Upgradeability concept for collaborative blockchain-based business process execution framework.
                      In: Proc. of the 3rd Int’l Conf. on Blockchain. Honolulu: Springer, 2020. 127–141. [doi: 10.1007/978-3-030-59638-5_9]
                 [60]   Benedetti A, Henry T, Tucci-Piergiovanni S. A comparative gas cost analysis of proxy and diamond patterns in EVM blockchains for
                      trusted smart contract engineering. In: Proc. of the 2024 Int’l Workshops on Financial Cryptography and Data Security. Willemstad:
                      Springer, 2025. 207–221. [doi: 10.1007/978-3-031-69231-4_14]
                 [61]   Asif R, Hassan SR. Shaping the future of Ethereum: Exploring energy consumption in proof-of-work and proof-of-stake consensus.
                      Frontiers in Blockchain, 2023, 6: 1151724. [doi: 10.3389/fbloc.2023.1151724]
                 [62]   Chen T, Li XQ, Luo XP, Zhang XS. Under-optimized smart contracts devour your money. In: Proc. of the 24th IEEE Int’l Conf. on
                      Software Analysis, Evolution and Reengineering (SANER). Klagenfurt: IEEE, 2017. 442–446. [doi: 10.1109/SANER.2017.7884650]
                 [63]   Krupa T, Ries M, Kotuliak I, Kostal K, Bencel R. Security issues of smart contracts in Ethereum platforms. In: Proc. of the 28th Conf. of
                      Open Innovations Association (FRUCT). Moscow: IEEE, 2021. 208–214. [doi: 10.23919/FRUCT50888.2021.9347617]
                 [64]   Marchesi L, Marchesi M, Destefanis G, Barabino G, Tigano D. Design patterns for gas optimization in Ethereum. In: Proc. of the 2020
                      IEEE  Int’l  Workshop  on  Blockchain  Oriented  Software  Engineering  (IWBOSE).  London:  IEEE,  2020.  9–15.  [doi: 10.1109/
                      IWBOSE50093.2020.9050163]
                 [65]   Chen T, Feng YZ, Li ZH, Zhou H, Luo XP, Li XQ, Xiao XZ, Chen JC, Zhang XS. GasChecker: Scalable analysis for discovering gas-
                      inefficient smart contracts. IEEE Trans. on Emerging Topics in Computing, 2020, 9(3): 1433–1448. [doi: 10.1109/TETC.2020.2979019]
                 [66]   Hu B, Zhang ZY, Liu JW, Liu YZ, Yin JY, Lu RX, Lin XD. A comprehensive survey on smart contract construction and execution:
   56   57   58   59   60   61   62   63   64   65   66