Page 35 - 《软件学报》2026年第1期
P. 35

32                                                         软件学报  2026  年第  37  卷第  1  期


                 [18]   Valiant L G, Paterson MS. Deterministic one-counter automata. Journal of Computer and System Sciences, 1975, 10(3): 340–350. [doi:
                     10.1016/S0022-0000(75)80005-5]
                 [19]   Travers S. The complexity of membership problems for circuits over sets of integers. Theoretical Computer Science, 2006, 369(1–3):
                     211–229. [doi: 10.1016/j.tcs.2006.08.017]
                 [20]   Schmitz  S.  Complexity  hierarchies  beyond  elementary.  ACM  Trans.  on  Computation  Theory  (TOCT),  2016,  8(1):  3.  [doi:  10.1145/
                     2858784]
                 [21]   Blondin M, Englert M, Finkel A, Göller S, Haase C, Lazić R, Mckenzie P, Totzke P. The reachability problem for two-dimensional vector
                     addition systems with states. Journal of the ACM (JACM), 2021, 68(5): 34. [doi: 10.1145/3464794]
                 [22]   Lafourcade P, Lugiez D, Treinen R. Intruder deduction for AC-like equational theories with homomorphisms. In: Proc. of the 16th Int’l
                     Conf. on Term Rewriting and Applications. Nara: Springer, 2005. 308–322. [doi: 10.1007/978-3-540-32033-3_23]
                 [23]   Haase C, Kreutzer S, Ouaknine J, Worrell J. Reachability in succinct and parametric one-counter automata. In: Proc. of the 20th Int’l
                     Conf. on Concurrency Theory. Bologna: Springer, 2009. 369–383. [doi: 10.1007/978-3-642-04081-8_25]
                 [24]   Fearnley J, Jurdziński M. Reachability in two-clock timed automata is PSPACE-complete. Information and Computation, 2015, 243:
                     26–36. [doi: 10.1016/j.ic.2014.12.004]
                 [25]   Mayr  EW.  An  algorithm  for  the  general  Petri  net  reachability  problem.  In:  Proc.  of  the  13th  Annual  ACM  Symp.  on  Theory  of
                     Computing. Milwaukee: ACM, 1981. 238–246. [doi: 10.1145/800076.802477]
                 [26]   Kosaraju SR. Decidability of reachability in vector addition systems (Preliminary Version). In: Proc. of the 14th Annual ACM Symp. on
                     Theory of Computing. San Francisco: ACM, 1982. 267–281. [doi: 10.1145/800070.802201]
                 [27]   Lambert JL. A structure to decide reachability in Petri nets. Theoretical Computer Science, 1992, 99(1): 79–104. [doi: 10.1016/0304-3975
                     (92)90173-D]
                 [28]   Sacerdote GS, Tenney RL. The decidability of the reachability problem for vector addition systems (Preliminary Version). In: Proc. of the
                     9th Annual ACM Symp. on Theory of Computing. Boulder: ACM, 1977. 61–76. [doi: 10.1145/800105.803396]
                 [29]   Leroux J, Schmitz S. Demystifying reachability in vector addition systems. In: Proc. of the 30th Annual ACM/IEEE Symp. on Logic in
                     Computer Science. Kyoto: IEEE, 2015. 56–67. [doi: 10.1109/LICS.2015.16]
                 [30]   Leroux J, Schmitz S. Ideal decompositions for vector addition systems. In: Proc. of the 33rd Symp. on Theoretical Aspects of Computer
                     Science (STACS 2016). Orléans: Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2016. 1. [doi: 10.4230/LIPIcs.STACS.2016.1]
                 [31]   Schmitz S. Algorithmic Complexity of Well-quasi-orders. Paris: École Normale Supérieure, 2017.
                 [32]   Leroux J, Schmitz S. Reachability in vector addition systems is primitive-recursive in fixed dimension. In: Proc. of the 34th Annual
                     ACM/IEEE Symp. on Logic in Computer Science (LICS 2019). Vancouver: IEEE, 2019. 1–13. [doi: 10.1109/LICS.2019.8785796]
                 [33]   Fu  YX,  Yang  QZ,  Zheng  YL.  Improved  algorithm  for  reachability  in  d-VASS.  In:  Proc.  of  the  51st  Int’l  Colloquium  on  Automata,
                     Languages, and Programming (ICALP 2024). Tallinn: Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2024. 136. [doi: 10.4230/
                     LIPIcs.ICALP.2024.136]
                 [34]   Lipton R. The reachability problem requires exponential space. Research Report, #63, New Haven: Department of Computer Science,
                     Yale University, 1976.
                 [35]   Czerwiński W, Lasota S, Lazić R, Leroux J, Mazowiecki F. The reachability problem for Petri nets is not elementary. Journal of the ACM
                     (JACM), 2020, 68(1): 7. [doi: 10.1145/3422822]
                 [36]   Czerwiński W, Lasota S, OrlikowskiŁ. Improved lower bounds for reachability in vector addition systems. In: Proc. of the 48th Int’l
                     Colloquium on Automata, Languages, and Programming (ICALP 2021). Dagstuhl: Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
                     2021. 128. [doi: 10.4230/LIPIcs.ICALP.2021.128]
                 [37]   Czerwiński W, Jecker I, Lasota S, Leroux J, Orlikowski Ł. New lower bounds for reachability in vector addition systems. In: Proc. of the
                     43rd  IARCS  Annual  Conf.  on  Foundations  of  Software  Technology  and  Theoretical  Computer  Science  (FSTTCS  2023).  Telangana:
                     Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2023. 35. [doi: 10.4230/LIPIcs.FSTTCS.2023.35]
                 [38]   Leroux J. The reachability problem for Petri nets is not primitive recursive. CoRR, abs/2104.12695, 2021.
                 [39]   Czerwiński  W,  Orlikowski  L.  Lower  bounds  for  the  reachability  problem  in  fixed  dimensional  vasses.  In:  Proc.  of  the  37th  Annual
                     ACM/IEEE Symp. on Logic in Computer Science. Haifa: ACM, 2022. 40. [doi: 10.1145/3531130.3533357]
                 [40]   Leroux J, Sutre G. On flatness for 2-dimensional vector addition systems with states. In: Proc. of the 15th Int’l Conf. on Concurrency
                     Theory. London: Springer, 2004. 402–416. [doi: 10.1007/978-3-540-28644-8_26]
                 [41]   Leroux J. Flat Petri nets. In: Proc. of the 2021 Int’l Conf. on Applications and Theory of Petri Nets and Concurrency. Cham: Springer,
                     2021. 17–30. [doi: 10.1007/978-3-030-76983-3_2]
                 [42]   Rosier LE, Yen HC. A multiparameter analysis of the boundedness problem for vector addition systems. Journal of Computer and System
   30   31   32   33   34   35   36   37   38   39   40