Page 34 - 《软件学报》2026年第1期
P. 34

陈蔚骏 等: 向量加法系统可达性问题复杂性下界研究综述                                                       31


                    2) 其他开放问题. 除此之外, 我们认为如下开放问题也是重要的.
                    (1) 是否存在一族二进制       3-VASS  可达性问题实例, 使得它们的证据长度至少是             2-exp(n) ?
                    (2) 是否存在一族二进制       7-VASS  可达性问题实例, 使得它们的证据长度至少是             3-exp(n) ?
                    (3) 一进制  7-VASS  是否是  EXPSPACE-难的?
                    (4)  1 -PVASS  可覆盖性问题是否是    EXPSPACE-难的?
                    关于问题    2(1)、2(2), 我们倾向于相信二进制       3-VASS  可达性问题是    Tower-完备的, 但是目前却找不到任何

                 严格长于   2 Ω(n)  的实例. 一进制  7-VASS  目前已知是  PSPACE-难的, 但是   8-VASS  即是  Tower-难, 二者差距较大,
                 因此  7-VASS  大概率有更好的下界.
                    VASS  模型有不少变种, 这些变种上的可达性问题难度更大, 有些问题的可判定性目前都无从知晓. PVASS
                 (pushdown VASS) 是  VASS  的一个常见拓展模型, 它比普通      VASS  增加了一个栈, 目前已知       1-PVASS  可覆盖性问
                 题是  PSPACE-难的, 且在   EXPSPACE   中, 也是一个上下界较为接近但仍旧没有定论的开放问题. 关于更多限制
                 或拓展模型的相关验证问题, 可以参考文献              [16].

                 References
                  [1]   Petri CA. Kommunikation mit Automaten [Ph.D. Thesis]. Bonn: Institute für Instrumentelle Mathematik, 1962.
                  [2]   van  Glabbeek  R,  Vaandrager  F.  Petri  net  models  for  algebraic  theories  of  concurrency.  In:  Proc.  of  the  1987  Int’l  Conf.  on  Parallel
                     Architectures and Languages Europe (PARLE). Eindhoven: Springer, 1987. 224–242. [doi: 10.1007/3-540-17945-3_13]
                  [3]   Reisig W. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. Berlin, Heidelberg: Springer, 2013. [doi: 10.1007/
                     978-3-662-03687-7]
                  [4]   Zurawski R, Zhou MC. Petri nets and industrial applications: A tutorial. IEEE Trans. on Industrial Electronics, 1994, 41(6): 567–583.
                     [doi: 10.1109/41.334574]
                  [5]   Chaouiya C. Petri net modelling of biological networks. Briefings in Bioinformatics, 2007, 8(4): 210–219. [doi: 10.1093/bib/bbm029]
                  [6]   Hamadi  R,  Benatallah  B.  A  Petri  net-based  model  for  Web  service  composition.  In:  Proc.  of  the  14th  Australasian  Database  Conf.
                     Adelaide: Australian Computer Society Inc., 2003. 191–200.
                  [7]   Angeli D, De Leenheer P, Sontag ED. A Petri net approach to the study of persistence in chemical reaction networks. Mathematical
                     Biosciences, 2007, 210(2): 598–618. [doi: 10.1016/j.mbs.2007.07.003]
                  [8]   Lohmann N, Verbeek E, Dijkman R. Petri net transformations for business processes—A survey. In: Trans. on Petri Nets and Other
                     Models of Concurrency II: Special Issue on Concurrency in Process-aware Information Systems. Berlin, Heidelberg: Springer, 2009.
                     46–63. [doi:10.1007/978-3-642-00899-3_3]
                  [9]   van der Aalst WMP. Petri-net-based workflow management software. In: Proc. of the 1996 NFS Workshop on Workflow and Process
                     Automation in Information Systems. 1996. 114–118.
                 [10]   Sun J, Qin SY, Song YH. Fault diagnosis of electric power systems based on fuzzy Petri nets. IEEE Trans. on Power Systems, 2004,
                     19(4): 2053–2059. [doi: 10.1109/TPWRS.2004.836256]
                 [11]   Karp RM, Miller RE. Parallel program schemata. Journal of Computer and System Sciences, 1969, 3(2): 147–195. [doi: 10.1016/S0022-
                     0000(69)80011-5]
                 [12]   Hopcroft J, Pansiot JJ. On the reachability problem for 5-dimensional vector addition systems. Theoretical Computer Science, 1979, 8(2):
                     135–159. [doi: 10.1016/0304-3975(79)90041-0]
                 [13]   Rackoff C. The covering and boundedness problems for vector addition systems. Theoretical Computer Science, 1978, 6(2): 223–231.
                     [doi: 10.1016/0304-3975(78)90036-1]
                 [14]   Czerwiński W, Orlikowski Ł. Reachability in vector addition systems is Ackermann-complete. In: Proc. of the 62nd IEEE Annual Symp.
                     on Foundations of Computer Science (FOCS 2021). Denver: IEEE, 2022. 1229–1240. [doi: 10.1109/FOCS52979.2021.00120]
                 [15]   Leroux J. The reachability problem for Petri nets is not primitive recursive. In: Proc. of the 62nd IEEE Annual Symp. on Foundations of
                     Computer Science (FOCS 2021). Denver: IEEE, 2022. 1241–1252. [doi: 10.1109/FOCS52979.2021.00121]
                 [16]   Zhang WB, Long H. State-of-the-art survey on verification of vector addition systems. Ruan Jian Xue Bao/Journal of Software, 2018,
                     29(6): 1566–1581 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5465.htm [doi: 10.13328/j.cnki.jos.005465]
                 [17]   Yang QZ. The study of vector addition system [Ph.D. Thesis]. Shanghai: Shanghai Jiao Tong University, 2022 (in Chinese with English
                     abstract). [doi: 10.27307/d.cnki.gsjtu.2022.000038]
   29   30   31   32   33   34   35   36   37   38   39