Page 326 - 《软件学报》2026年第1期
P. 326

刘立伟 等: 数据要素流通全流程隐私关键技术: 现状、挑战与展望                                                 323


                      and back again. In: Proc. of the 3rd Innovations in Theoretical Computer Science Conf. Cambridge: ACM, 2012. 326–349. [doi: 10.1145/
                      2090236.2090263]
                 [49]   Konečný J, McMahan HB, Ramage D, Richtárik P. Federated optimization: Distributed machine learning for on-device intelligence.
                      arXiv:1610.02527, 2016.
                 [50]   Konecný J, McMahan HB, Yu FX, Suresh AT, Bacon D, Richtárik P. Federated learning: Strategies for improving communication
                      efficiency. In: Proc. of the 6th Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
                 [51]   McMahan HB, Moore E, Ramage D, Arcas BAY. Federated learning of deep networks using model averaging. arXiv:1602.05629, 2016.
                 [52]   McMahan HB, Moore E, Ramage D, Hampson S, Arcas BAY. Communication-efficient learning of deep networks from decentralized
                      data. In: Proc. of the 20th Int’l Conf. on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017. 1273–1282.
                 [53]   Zhu LG, Liu ZJ, Han S. Deep leakage from gradients. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems.
                      Vancouver: Curran Associates Inc., 2019. 1323.
                 [54]   Geiping J, Bauermeister H, Dröge H, Moeller M. Inverting gradients—How easy is it to break privacy in federated learning? In: Proc. of
                      the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 1421.
                 [55]   Tan Y, Long GD, Liu L, Zhou TY, Lu QH, Jiang J, Zhang CQ. FedProto: Federated prototype learning across heterogeneous clients. In:
                      Proc. of the 36th AAAI Conf. on Artificial Intelligence. AAAI, 2022. 8432–8440. [doi: 10.1609/aaai.v36i8.20819]
                 [56]   Hu R, Guo YX, Li HN, Pei QQ, Gong YM. Personalized federated learning with differential privacy. IEEE Internet of Things Journal,
                      2020, 7(10): 9530–9539. [doi: 10.1109/JIOT.2020.2991416]
                 [57]   Zhang CL, Li SY, Xia JZ, Wang W, Yan F, Liu Y. BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning. In:
                      Proc. of the 2020 USENIX Annual Technical Conf. USENIX Association, 2020. 33.
                 [58]   Tan AZ, Yu H, Cui LZ, Yang Q. Towards personalized federated learning. IEEE Trans. on Neural Networks and Learning Systems,
                      2023, 34(12): 9587–9603. [doi: 10.1109/TNNLS.2022.3160699]
                 [59]   Ye  M,  Fang  XW,  Du  B,  Yuen  PC,  Tao  DC.  Heterogeneous  federated  learning:  State-of-the-art  and  research  challenges.  ACM
                      Computing Surveys, 2023, 56(3): 79. [doi: 10.1145/3625558]
                 [60]   Collins L, Hassani H, Mokhtari A, Shakkottai S. Exploiting shared representations for personalized federated learning. In: Proc. of the
                      38th Int’l Conf. on Machine Learning. OpenReview.net, 2021. 2089–2099.
                 [61]   Liang PP, Liu T, Liu ZY, Allen NB, Auerbach RP, Brent D, Salakhutdinov R, Morency LP. Think locally, act globally: Federated
                      learning with local and global representations. arXiv:2001.01523, 2020.
                 [62]   Wu  CH,  Wu  FZ,  Lyu  L,  Huang  YF,  Xie  X.  Communication-efficient  federated  learning  via  knowledge  distillation.  Nature
                      Communications, 2022, 13(1): 2032. [doi: 10.1038/s41467-022-29763-x]
                 [63]   Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S. Federated learning with personalization layers. arXiv:1912.00818, 2019.
                 [64]   Bagdasaryan E, Veit A, Hua YQ, Estrin D, Shmatikov V. How to backdoor federated learning. In: Proc. of the 23rd Int’l Conf. on
                      Artificial Intelligence and Statistics. Palermo: PMLR, 2020. 2938–2948.
                 [65]   Fu C, Zhang XH, Ji SL, Chen JY, Wu JZ, Guo SQ, Zhou J, Liu AX, Wang T. Label inference attacks against vertical federated learning.
                      In: Proc. of the 31st USENIX Security Symp. Boston: USENIX Association, 2022. 1397–1414.
                 [66]   Arazzi M, Conti M, Nocera A, Picek S. Turning privacy-preserving mechanisms against federated learning. In: Proc. of the 2023 ACM
                      SIGSAC Conf. on Computer and Communications Security (CCS 2023). Copenhagen: ACM, 2023. 1482–1495. [doi: 10.1145/3576915.
                      3623114]
                 [67]   Fu CH, Chen HB, Ruan N. Privacy for free: Spy attack in vertical federated learning by both active and passive parties. IEEE Trans. on
                      Information Forensics and Security, 2025, 20: 2550–2563. [doi: 10.1109/TIFS.2025.3534469]
                 [68]   Mo F, Haddadi H, Katevas K, Marin E, Perino D, Kourtellis N. PPFL: Privacy-preserving federated learning with trusted execution
                      environments. In: Proc. of the 19th Annual Int’l Conf. on Mobile Systems, Applications, and Services. ACM, 2021. 94–108. [doi: 10.
                      1145/3458864.3466628]
                 [69]   Amiri MJ, Agrawal D, El Abbadi A. ParBlockchain: Leveraging transaction parallelism in permissioned blockchain systems. In: Proc. of
                      the 39th Int’l Conf. on Distributed Computing Systems. Dallas: IEEE, 2019. 1337–1347. [doi: 10.1109/ICDCS.2019.00134]
                 [70]   Androulaki E, Barger A, Bortnikov V, et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In: Proc.
                      of the 13th EuroSys Conf. Porto: ACM, 2018. 30. [doi: 10.1145/3190508.3190538]
                 [71]   Dang H, Dinh TTA, Loghin D, Chang EC, Lin Q, Ooi BC. Towards scaling blockchain systems via sharding. In: Proc. of the 2019 Int’l
                      Conf. on Management of Data. Amsterdam: ACM, 2019. 123–140. [doi: 10.1145/3299869.3319889]
                 [72]   Amiri MJ, Agrawal D, El Abbadi A. SharPer: Sharding permissioned blockchains over network clusters. In: Proc. of the 2021 Int’l Conf.
                      on Management of Data. ACM, 2021. 76–88. [doi: 10.1145/3448016.3452807]
   321   322   323   324   325   326   327   328   329   330   331