Page 324 - 《软件学报》2026年第1期
P. 324

刘立伟 等: 数据要素流通全流程隐私关键技术: 现状、挑战与展望                                                 321


                  [4]   Huo W, Yu Y, Yang K, Zheng ZX, Li XX, Yao L, Xie J. Privacy-preserving cryptographic algorithms and protocols: A survey on
                      designs and applications. Scientia Sinica Informationis, 2023, 53(9): 1688–1733 (in Chinese with English abstract). [doi: 10.1360/SSI-
                      2022-0434]
                  [5]   Paul M, Ganguli S, Dziugaite GK. Deep learning on a data diet: Finding important examples early in training. In: Proc. of the 35th Int’l
                      Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 1575.
                  [6]   Shanmugam  D,  Diaz  F,  Shabanian  S,  Finck  M,  Biega  A.  Learning  to  limit  data  collection  via  scaling  laws:  A  computational
                      interpretation  for  the  legal  principle  of  data  minimization.  In:  Proc.  of  the  2022  ACM  Conf.  on  Fairness,  Accountability,  and
                      Transparency. Seoul: ACM, 2022. 839–849.
                  [7]   Ganesh P, Tran C, Shokri R, Fioretto F. The data minimization principle in machine learning. In: Proc. of the 2025 ACM Conf. on
                      Fairness, Accountability, and Transparency. Athens: ACM, 2025. 3075–3093.
                  [8]   Staab R, Jovanović N, Balunović M, Vechev M. From principle to practice: Vertical data minimization for machine learning. In: Proc. of
                      the 2024 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2024. 4733–4752. [doi: 10.1109/SP54263.2024.00089]
                  [9]   Biega AJ, Potash P, Daumé H, Diaz F, Finck M. Operationalizing the legal principle of data minimization for personalization. In: Proc.
                      of  the  43rd  Int’l  ACM  SIGIR  Conf.  on  Research  and  Development  in  Information  Retrieval.  ACM,  2020.  399–408.  [doi:  10.1145/
                      3397271.3401034]
                 [10]   Galdon Clavell G, Martín Zamorano M, Castillo C, Smith O, Matic A. Auditing algorithms: On lessons learned and the risks of data
                      minimization. In: Proc. of the 2020 AAAI/ACM Conf. on AI, Ethics, and Society. New York: ACM, 2020. 265–271. [doi: 10.1145/
                      3375627.3375852]
                 [11]   Rastegarpanah B, Gummadi KP, Crovella M. Auditing black-box prediction models for data minimization compliance. In: Proc. of the
                      35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 1577.
                 [12]   Rastegarpanah B, Crovella M, Gummadi KP. Fair inputs and fair outputs: The incompatibility of fairness in privacy and accuracy. In:
                      Adjunct Publication of the 28th ACM Conf. on User Modeling, Adaptation and Personalization. Genoa: ACM, 2020. 260–267. [doi: 10.
                      1145/3386392.3399568]
                 [13]   Sato R, Takezawa Y, Bao H, Niwa K, Yamada M. Embarrassingly simple text watermarks. arXiv:2310.08920, 2023.
                 [14]   Munyer  T,  Tanvir  A,  Das  A,  Zhong  X.  DeepTextMark:  A  deep  learning-driven  text  watermarking  approach  for  identifying  large
                      language model generated text. IEEE Access, 2024, 12: 40508–40520. [doi: 10.1109/ACCESS.2024.3376693]
                 [15]   Atallah  MJ,  Raskin  V,  Crogan  M,  Hempelmann  C,  Kerschbaum  F,  Mohamed  D,  Naik  S.  Natural  language  watermarking:  Design,
                      analysis, and a proof-of-concept implementation. In: Proc. of the 4th Int’l Workshop on Information Hiding. Pittsburgh: Springer, 2001.
                      185–200. [doi: 10.1007/3-540-45496-9_14]
                 [16]   Abdelnabi S, Fritz M. Adversarial watermarking Transformer: Towards tracing text provenance with data hiding. In: Proc. of the 2021
                      IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2021. 121–140. [doi: 10.1109/SP40001.2021.00083]
                 [17]   Lau GKR, Niu XY, Dao H, Chen JW, Foo CS, Low BKH. Waterfall: Framework for robust and scalable text watermarking. In: Proc. of
                      the 2024 Conf. on Empirical Methods in Natural Language Processing. Miami: EMNLP, 2024. 20432–20466.
                 [18]   Adi  Y,  Baum  C,  Cisse  M,  Pinkas  B,  Keshet  J.  Turning  your  weakness  into  a  strength:  Watermarking  deep  neural  networks  by
                      backdooring. In: Proc. of the 27th USENIX Conf. on Security Symp. Baltimore: USENIX Association, 2018. 1615–1631.
                 [19]   Tang RX, Feng QZ, Liu NH, Yang F, Hu X. Did you train on my dataset? Towards public dataset protection with CleanLabel backdoor
                      watermarking. ACM SIGKDD Explorations Newsletter, 2023, 25(1): 43–53. [doi: 10.1145/3606274.3606279]
                 [20]   Kirchenbauer J, Geiping J, Wen YX, Katz J, Miers I, Goldstein T. A watermark for large language models. In: Proc. of the 40th Int’l
                      Conf. on Machine Learning. Honolulu: ICML, 2023. 17061–17084.
                 [21]   Liu AW, Pan LY, Hu XM, Li S, Wen LJ, King I, Yu PS. An unforgeable publicly verifiable watermark for large language models. In:
                      Proc. of the 12th Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2024.
                 [22]   Gentry  C.  Fully  homomorphic  encryption  using  ideal  lattices.  In:  Proc.  of  the  41st  Annual  ACM  Symp.  on  Theory  of  Computing.
                      Bethesda: ACM, 2009. 169–178. [doi: 10.1145/1536414.1536440]
                 [23]   van Dijk M, Gentry C, Halevi S, Vaikuntanathan V. Fully homomorphic encryption over the integers. In: Proc. of the 29th Annual Int’l
                      Conf. on the Theory and Applications of Cryptographic Techniques. French Riviera: Springer, 2010. 24–43. [doi: 10.1007/978-3-642-
                      13190-5_2]
                 [24]   Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE. SIAM Journal on computing, 2014,
                      43(2): 831–871. [doi: 10.1137/120868669]
                 [25]   Fan JF, Vercauteren F. Somewhat practical fully homomorphic encryption. 2012. https://eprint.iacr.org/2012/144.pdf
                 [26]   Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
   319   320   321   322   323   324   325   326   327   328   329